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Abbreviations and acronyms in alphabetical order

a - micro-catchments

b- meso-catchments

¢ - macro-catchments

d - large catchments

e - very large catchments

A - catchment area [km2]

Exp — exponential distribution

FFA - Flood frequency analysis

GEV - generalized extreme value distribution
GGEV - Dual Gamma Generalized Extreme Value Distribution
GOF - Goodness of fit test

H — highland

Kurt. - kurtosis

L — lowland

LN2 - 2-parameter log-normal distribution
LN3 - 3-parameter log-normal distribution
M - mountain

MAE - Mean Absolute Error

MAF - mean annual maximum flow

MK - The Mann-Kendall trend test

MLE - maximum likelihood estimation

N - sample size

NMT - no trend

NT - negative trend

P3 - Pearson |11 type distribution

PT - positive trend

Qp - Peak flow

RDA - Redundancy Analysis

RMSE - Root mean square error

SD - standard deviation
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Skew. - empirical skewness
Var - variation
VIF - Variance Inflation Factor
45 Abstract. Climate change has already impacted global water resources, and it is expected to have even more severe
consequences in the future. Advancing climate change will necessitate the use of new distributions that are more flexible in
adapting to changes in stationarity or the presence of trends in the sample. In this work, we compare the best fit of three-
parameter distributions such as lognormal, Generalized Extreme Value (GEV), Pearson type 111, and a new extension of GEV
- Dual Gamma Generalized Extreme Value Distribution (GGEV) under different trends in the time series and by adding criteria
50 such as catchment area and peak flow magnitude. The research pertains to catchments in the temperate climate zone of Poland,
covering 678 water gauges in 340 rivers. Based on a trend criterion, the GGEV distribution compared to the analyzed three-
parameter distributions, and the GEV distribution compared to the other three-parameter distributions, were the best fit for
most samples. Based on the trend criterion and catchment size it was found that the GEV distribution is best suited for micro-
and meso-catchments, while the GGEV distribution is ideal for macro- to large-catchments where the series exhibits a trend,
55 either positive or negative. The major benefit of the GGEV distribution is its flexibility when the data are influenced by
temporal non-stationarities. The additional shape parameter compensates for the limitations of the other shape parameter in
distributions with lighter tails. Analysis of the dependence relationships between environmental indicators such as geographic,
physiographic and hydrological indicators and the distribution parameters is less conclusive. In order to test the risk of
overparameterization and overfitting for the distributions with more parameters, Kolmogorov-Smirnov tests and K-Fold cross
60 validation shows that the GEV and GGEV distributions perform better compared to the exponential and two-parameter
lognormal distributions. As an overall conclusion, the study showed that for the analyzed samples in the temperate climate

zone in the era of climate change, distributions that better respond to trends, like GGEV, are more likely to be applied.

1 Introduction

Climate change has already impacted global water resources, and it is expected to have even more severe consequences in the
65 future (Dakhlaoui et al., 2019; Pokhrel et al., 2021; Potomski and Wiatkowski, 2023; Tomczyk et al., 2023; Willems, 2013).
The significance of climate change lies in the substantial impacts it brings, including the increased occurrence of floods (Gruss
et al., 2023; Tabari et al., 2021b). In modeling extreme hydrological events, such as floods, stochastic modeling is commonly
used. This approach relies on historical data and employs probability distributions (Gruss et al., 2022; Mtynski et al., 2020) to
account for the uncertainty and variability of these phenomena (Szulczewski and Jakubowski, 2018). Such methods include
70 the at-site flood frequency analysis [FFA] (Cassalho et al., 2018). The choice of probability distribution should be verified
through the assumptions of stationarity and independence, as any deviation can lead to biased distributions and potentially
catastrophic consequences, such as inappropriate designs that jeopardize property and human life (Ologhadien, 2021).
However, the assumption of stationarity has faced increasing challenges due to the intensification of climate change and human
activities (Gruss et al., 2022; Jiang and Kang, 2019; Milly et al., 2008). Many studies present series consisting of annual
75 maximums where, for some water gauges, the assumption of stationarity, randomness, or non-monotonic trend (NMT) is not
met (Cassalho et al., 2018; Szulczewski and Jakubowski, 2018). Advancing climate change will necessitate the use of new
distributions that are more flexible in adapting to changes in stationarity or the presence of trends in the sample.
In many countries, two- and three-parameter distributions are used to estimate the magnitude and frequency of annual
maximum streamflow (AMS) (e.g. Valentini et al., 2024 ; Gruss et al., 2022; Mtynski et al., 2018; Pitlick, 1994; Rutkowska
80 etal., 2015; Rutkowska et al., 2015; Bezak et al., 2014; Morlot et al., 2019; Sraj et al., 2016; Ul Hassan et al., 2019; Berton
and Rahmani, 2024). The Pearson Type Il distribution provides the best fit to both annual minimum and annual average
streamflows, assuming the series is stationary but with a linear trend (Vogel and Wilson, 1996). There are also many studies
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among them on Pearson type 3 (P3) (Cassalho et al., 2018) log Pearson Type 3 (LP3) (Berton and Rahmani, 2024; Morlot et
al., 2019) and log-normal distributions in at-site FFA (Cassalho et al., 2018). In recent decades, a significant amount of research
85 has been dedicated to the GEV distribution. Extreme events are often better modeled using distributions with heavy tails
(Karczewski et al., 2022; Karczewski and Michalski, 2022), a characteristic of the GEV distribution (Cassalho et al., 2018;
Morlot et al., 2019; Otiniano et al., 2019; Rutkowska et al., 2015).
However, some extreme event data do not follow the GEV distribution because they require a more asymmetric distribution
or one with a heavier tail. As a result, new classes of probability distributions have been developed that extend beyond the
90 GEV distribution, such as the Dual Gamma GEV distribution (GGEV) (Otiniano et al., 2019). GGEV distribution is regarded
as highly flexible for several reasons: 1. It introduces an additional parameter that adjusts tail weight and skewness, making it
more adaptable to diverse datasets. 2. This added flexibility allows the GGEV distribution to capture the nuances of empirical
data more effectively than the standard GEV distribution. 3. As a result, the GGEV distribution is often preferred in practical
applications where accurate modeling of complex data is essential (Nascimento et al., 2016). The additional shape parameter
95 enables the GGEV distribution to adapt to various data characteristics, especially in terms of tail behavior. Notably, when this
parameter is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more effective for modeling extreme events
that may occur more frequently than lighter-tailed distributions would predict (E Silva and Do Nascimento, 2022).
Next to the influence of non-stationarities, it is well-known that various environmental factors, including land use, may
significantly influence the tail of flood frequency distributions, although this depends on the region. Pitlick (1994) found that
100 the mean annual flood is most closely correlated with watershed area, but did not find an influence of other measures of
catchment physiography on the differences in flood frequency distributions. In contrast, research by Ahilan et al. (2012)
confirms that the type of landscape influences the GEV distribution. Other research by Sampaio and Costa (2021) and Tyralis
et al. (2019) has shown that morphological catchment characteristics correlate with these distributions. Also Kusumastuti
(2007) highlighted the role of environmental factors in influencing flood frequency and the occurrence of flood events.
105 Although single factors may not always correlate well with the distribution parameters, it may be the combined influence of
multiple factors that explain the differences in flood quantiles (Allamano et al., 2009). Understanding this influence may offer
valuable insights for regionalization (He et al., 2015) and reduce uncertainties in inferences made using regional FFA
frameworks (Hu et al., 2020; Tyralis et al., 2019). In this study, the assumption is made that if environmental factors have an
influence on distribution parameters, one can expect dependence relationships between the parameters when different
110 distributions are calibrated to the flood data.
The aim of the study is to analyze the fit of the GGEV distribution versus three-parameter distributions (GEV, LN3, P3) to
empirical data for river catchments in Poland. The study also aims to analyze the consistency of patterns exhibited by
environmental factors concerning the parameters of the examined distributions and to conduct tests for overparameterization

and overfitting of the analyzed distributions.

115 2 Study area

The research area spans 678 water gauge situated within the drainage basins of the Dniester, Dunajec, Neman, Oder, Pregota,
Vistula, and other rivers that flow into the Baltic Sea and, covering the territory of Poland in Central Europe (Figure 1). The

area of Poland is located within a temperate climate zone.
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120  Figure 1. Location of analyzed 678 water gauges (Source: hydrographic map of Poland).

Depending on the size of the catchment area in the studied area, micro-catchments (A < 10 km?), meso-catchments (10 < A <
100 km?), macro-catchments (100 < A < 1,000 km?), large catchments (1,000 < A < 10,000 km?), and very large catchments
(A > 10,000 km?) were distinguished. The presented division criterion was adopted based on (Bertola et al., 2020). The least
number of micro-catchments was recorded (for 2 stream gauge profiles), and the highest number of macro-catchments (for

125 388 stream gauge profiles). In between were very large catchments, meso-catchments, and large catchments, in amounts of
50, 68, and 170 stream gauge profiles, respectively (Fig. 1).
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Figure 2. The terrain characteristics of the analyzed 678 stream gauge profiles consist of lowlands, uplands, and mountains (Source:
hydrographic map of Poland).

130 The terrain of the studied area is uneven. The majority of stream gauge profiles (as many as 582 stream gauge profiles) are
located in lowland areas (Fig. 2). These are catchments situated within the provinces of the Central Polish Lowland, Eastern
Baltic-Belarusian Lowland, and the Czech Massif, on the Polish Uplands. A smaller quantity, specifically 86 stream gauge
profiles, were located in highland areas. They are located within the provinces of the Polish Uplands, Czech Massif, and the
Western Carpathians with the Western and Northern Podkarpacie, as well as the Eastern Carpathians with the Eastern

135 Podkarpacie. Stream gauge profiles located in mountainous areas, totalling 10, are situated within the provinces of the Czech
Massif and the Western Carpathians with the Western and Northern Podkarpacie, as well as the Eastern Carpathians with the

Eastern Podkarpacie.

3 Methods
3.1 Data collection and extraction of flow extremes

140 For 678 gauge stations located in the basins of the Vistula, Oder, coastal rivers, Pregota, and Neman, Dniester, Dunajec,
maximum annual flows were collected. The source of the data (flows) is the Institute of Meteorology and Water Management
- National Research Institute (IMGW-PIB). These data have been processed. The gauge stations for which only series equal
to or longer than 30 years could be collected were retained (Gruss et al., 2022; Tabari et al., 2021a). The data periods used for
analysis varied across stations, from 30 to 70. In this way, maximum annual flows were collected for 678 stations. The data
145 are compiled in the hydrological year, which for Poland begins in November and ends in October. For each hydrological year,
the annual maximum flow was extracted. These are hereafter referred to as peak flows (Qp) and are often associated with
floods or extreme hydrological events (Gruss et al., 2022; Langridge et al., 2020; Northrop, 2004). Qp help in understanding
the maximum capacity of rivers or streams to handle water, which is essential for infrastructure planning, floodplain
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management, and disaster mitigation efforts (Langridge et al., 2020). The Qp were utilized in this study for calibrating and
150 evaluating the probability distributions.

Per station, the mean annual flood or mean annual maximum flow (MAF) represents the average of the Qp over the period of

record (Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). Hydrologists often analyze mean annual maximum flows to

understand the long-term characteristics of river systems, including flood frequency, river behavior, and water resource

management (Merz and Bloschl, 2009; Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). The MAF was utilized in this study

155 for the redundancy analysis.

3.2 Trend detection

For all analyzed time series, a test was conducted to ascertain the presence of a trend. The Mann-Kendall test was utilized for
this purpose. This allowed grouping the obtained distributions into three categories: without a trend, with a positive trend, and
with a negative trend.

160 The Mann-Kendall test (MK) is frequently used to detect monotonic trend in long time series of hydrological data (Cassalho
etal., 2018; Gruss et al., 2022, 2023; Rutkowska, 2015; Svensson et al., 2005).
The null hypothesis is that the data are identically distributed, the alternative hypothesis is that the data follow a monotonic

trend. A two sided test was performed and the significance level was set at 5%.

3.3 Extreme value distributions

165 This study considered the following type of extreme value distributions: the four-parameter GGEV distribution and the three-
parameter distributions GEV, LN3, and P3.

The GGEV probability density function (PDF) proposed by (Nascimento et al., 2016), is given by:

L S Gl R f-r1+ Mﬁ},g #0
fls w038 8) =49 ’ ’ : O]
75 exp(=61(x = w/oTexp {~exp {[- 11}, - 0

170 where:

w — location parameter

o — scale parameter

& — shape parameter

& — shape parameter of GGEV extension.

175 This GGEV is a four-parameter extension of the (GEV) distribution with an additional shape parameter (8). The additional
parameter allows for varying tail weights and skewness, making it more adaptable to different types of data (Nascimento et
al., 2016). A Bayesian Monte Carlo Markov Chain (MCMC) approach is used to estimate the posterior parameters of the
GGEV distribution. . For the additional shape parameter 3, the optimal value is assessed after using the Akaike Information
Criterion (AIC) (E Silva and Do Nascimento, 2022; Nascimento et al., 2016). The estimation of the parameters and fitting of

180 probability distribution was done using the following R package: ‘MCMC4Extremes’.

The Generalized Extreme Value Distribution (GEV) was used in many studies (Abida and Ellouze (2008), Bezak, Brilly and
Sraj (2014), Cassalho et al. (2018), Kidson and Richards (2005), Szulczewski and Jakubowski (2018)). The GEV PDF function
is given in equation (2):

185 f(x) = exp[—{1 + =15, )
where:

a, b, s are location, scale and shape parameters, respectively.
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for 1+s(x-a))/b>0, where b>0.

The parameters of this distribution were estimated by the maximum likelihood method (MLE), as described by Smith (1985).
190 The estimation of the parameters and fitting of GEV distribution was done using the following R packages: ‘evd’ and

‘fExtremes’.

The LN3 distribution function is given by the formula (3):

f6) = o exp(= 57z [loglx — @) — 1), ®)

where:
195 py, o, aare shape, scale and location, parameters, respectively.
The LN3 is similar to the two-parameter LN2 distribution, except that x is subtracted by a value a in the former, which
represents the lower bound (Cassalho et al., 2018). The parameters of this distribution were estimated by MLE as shown by
Meeker and Escobar (1998). The estimation of the parameters and fitting of probability distribution was done using the
following R packages: ‘EnvStats’ and 'weibulltools'. For the MLE method used to estimate the distribution parameters a
200 confidence level of 0.95 was assumed.
The PDF of the P3 distribution is given by (4):

FO) = s e = A7 @
for s#0, a>0 and "Si >0.
Where:
205 a, s, k are shape, scale and location parameters, respectively.
The MLE was used to estimate the parameters for the P3 distribution. In the gamma distribution developed by Becker and

Kl6Bner (2017), this function allows negative scale parameters to allow for negative skewness. The estimation of the

parameters and fitting of probability distribution was done using the R package ‘PearsonDS’.

3.4 Accuracy measures

210 The goodness of fit of the four probability distributions to the empirical data was evaluated based on the accuracy measures
Mean Absolute Error (MAE) and Root mean square error (RMSE). The MAE is recommended for leptokurtic distributions
(MAE) and RMSE is preferred for platykurtic distributions (Karunasingha, 2022). Among the 678 samples, the kurtosis value
exceeded 3 for 560 samples (leptokurtic distributions), while kurtosis less than 3 was observed in 118 samples (platykurtic
distributions).

215

3.5 Redundancy analysis

Redundancy analysis (RDA) was applied as a canonical technique, to investigate the influence of environmental variables and
sample characteristics on the parameters of the extreme value distributions. It aims to identify common patterns and key factors
affecting the distribution parameters.

220 The environmental factors examined included the watershed area, categorised by catchment type, and the nature of the
watercourse (Lowlands, Highlands, Mountains) (Bertola et al., 2020; Han et al., 2023; Tyralis et al., 2019). Sample
characteristics considered included the highest Qp, MAF, sample size, empirical moments of standard deviation (SD), variance
(\ar), skewness, kurtosis, third-moment center, fourth-moment center (which measures the intensity of the distribution tails)

of the Qp, and trend measures.
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225 RDA was performed separately for each distribution. The final RDA model was selected by evaluating environmental variables
and sample characteristics using the Variance Inflation Factor (VIF). RDA, standardized by response variables (center and
standardize) and environmental variables (center), was performed using Canoco 5.12.

3.6. Assessing overparameterization and overfitting

A distribution with more parameter does not necessarily lead to a more accurate distribution. It obviously will lead to a better
230 goodness-of-fit because due to the higher flexibility during the calibration, but more parameters will lead to higher uncertainty
in parameter calibration. So, the three- and more parameter distribution may lead to "overparameterization" and "overfitting".
With more parameters, there is also a risk that distribution extrapolations may be more erroneous (Alsadat et al., 2023).
In order to evaluate whether the increased complexity of multi-parameter distributions offers a substantial improvement in fit
or merely results in overfitting, the procedure shown in Figure 3 was applied.
235 The one- and two-parameter distributions of the exponential (Exp) and 2-lognormal (LN2) distributions were designated to
serve as a reference point for evaluating the overparameterization and overfitting in the three- and four-parameter distributions
GEV and GGEV.

Determining one and two-parameter distributions Determining multi-parameter distributions
Exp, LN2 GEV, LN3, P3, GGEV
—
& | |
& | Goodness-of-fit assessment | | Goodness-of-fit assessment
| Beremfug mrim A | | Graring i dEF s

The analysis of the vale shape parameter The analysis of the value shape parameter
I3 of the distribution (when it exists) of the distribution (when it exists)
by
[}

Comparison of the shape parameter values

K-fold cross-validation

240  Figure 3. Workflow for evaluating overparameterization and overfitting in multi-parameter probability distributions.

The first analysis focused on examining whether the theoretical GEV and GGEV distributions significantly alter the shape
parameter compared to the LN2 distribution (Fig. 3: Step 2) (Raynal-Villasenor and Raynal-Gutierrez, 2014). This
investigation aimed to determine whether the GEV and GGEV distributions are more complex (overparameterized) than
necessary and whether fitting these distributions improves their ability to accurately predict extreme values, particularly for

245  very high return periods.
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In the second analysis, the Kolmogorov-Smirnov test was used (Kimetal., 2017) in two testing variants: 1. theoretical quantiles
with empirical data and 2. empirical data with random quantiles (Fig.3: Step 3). This was done for the GEV, GGEV, Exp, and
LN2 distributions. The hypothesis was that a p-value less than 0.05 would suggest rejecting the hypothesis that the samples
come from the same distribution. The KS test was used to determine whether multi-parameter distributions (such as GEV and
250 GGEV) might provide slightly better fits in some cases (variant 1) and whether they could be more prone to overfitting (variant
2) (Ozonur et al., 2021).
In the third analysis, the K-fold cross-validation (split sample test) was used to validate the distribution’s performance (Fig. 3:
Step 4) (Kim et al., 2017; Xu and Goodacre, 2018). In this study, we employed the k-fold cross-validation technique,
specifically dividing the data series into 5 equal folds (also called 5-folds) (Rohani et al., 2018; Yadav and Shukla, 2016). The
255  distribution is trained on k—1 subsets and tested on the remaining subset. This process is repeated k times until each subset has
been used as the test set (Prusty et al., 2022). K-fold cross-validation is often used for comparing and selecting the best
distribution for a given predictive problem. This method allows for evaluating which distribution generalizes best to new data
(Brunner et al., 2018; Jaiswal et al., 2022). Cross-validation was performed for GEV and GGEV distributions. To check the
results, the following measures were used: MAE (for leptokurtic distributions), RMSE (for platykurtic distributions)
260 (Karunasingha, 2022). In response to the question of how these analyses would be conducted for distributions with fewer than
three parameters, two additional distributions — Exp and LN2 — were selected for testing. Finally, a comparison of cross-
validation results between GEV, GGEV and Exp, LN2 distributions was conducted. For the GEV and GGEV, only the
distribution with the best fit following the MAE and RMSE, was considered in that analysis. That means that the total number
of tested samples was 678 for each of the Exp and LN2 distributions. In contrast, there were 172 samples for the GEV
265 distribution and 281 for the GGEV distribution.
The methods for determining the Exp and LN2 distributions and their goodness-of-fit assessment are presented in
Supplementary Material S1 and S2. The generation of random samples for the Exp, LN2, GEV and GGEV distributions are
described in the Supplementary Material S3.

4 Results and discussion
270 4.1 Goodness of fit results in relation to the trend category

Among the 678 samples, a no trend (NMT) was observed in the highest number of cases (446). Conversely, a negative trend
(NT) was identified in 200 samples, while the least number of samples exhibited a positive trend (PT) (32 samples) (Figure 4,
Table S1).
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275 Figure. 4. Count of four fitting distributions (GEV, GGEV, LN3, P3) with marked trend categories.

In the case of no trend (NMT), the accuracy measures show a good fit for the LN3 distribution to 61 samples, the Pearson I11
type distribution to 96 samples, the GEV distribution to 111 samples, and the GGEV distribution to 178 samples (Figure 4).
In instances of a negative trend (NT), the accuracy measures led to fitting the LN3 distribution to 27 samples, the Pearson 11
type distribution to 32 samples, the GEV distribution to 53 samples, and the GGEV distribution to 88 samples (Figure 4). In
280 turn, for a positive trend (PT), the accuracy measures resulted in fitting the Pearson 111 type distribution to 4 samples, the LN3
distribution to 5 samples, the GEV distribution to 8 samples, and the GGEV distribution to 15 samples (Figure 4). In NMT
samples, the GGEV distribution was the most frequently identified and the LN3 distribution was the least common. Similarly,
for NT and PT samples, the GGEV distribution was most frequently observed, while the LN3 distribution was least frequently
encountered in NT samples, and the P3 distribution was the least frequently observed in PT samples (Figure 4). Among the
285 four examined distributions, the GGEV distribution predominates in general. The GGEV distribution prevails in terms of count
for all trend categories (Figure 4, Table S1) when compared to the three-parameter distributions. This is consistent with the
findings by Nascimento et al., (2016), who found for maximum monthly flow data that the best model was the generalized
GGEV model rather than the GEV model.
Focusing solely on the three-parameter distributions (P3, LN3, and GEV), it is evident that the GEV distribution is most
290 frequently fitted best, followed by the P3 and LN3 distributions (for 172, 132, and 93 samples, respectively). This applies to
both NMT and NT samples. In contrast, for the PT samples, , the GEV distribution has the highest number of best-fit samples
among the three-parameter distributions, followed by the LN3 distribution and, finally, the P3 distribution (Figure 4, Table

10
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S1). This is consistent with Kumar et al. (2003), who argue that the GEV distribution in terms of the L-moments was the best
fit compared to P3. Bezak et al. (2014) obtained a completely different result, indicating that the best results were obtained
295  with the P3 distribution in terms of the MLE.

4.2. Goodness of fit results in relation to the trend and catchment size categories

It was checked whether a similar pattern of results is obtained when considering catchment area size ranges (Figure 5).

Distribution by catchment area size and trend detection
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Figure 5. Count of four fitting distributions (P3, LN3, GEV and GGEV) with marked trend and catchment size categories.

300 For the NMT samples, the best-fitted distribution is the GEV distribution for samples where the catchment area is less than 10
km?, in the range 10 — 100 km?, and P3 above 10,000 km?. Meanwhile, the GGEV distribution is the best fit for samples with
catchment areas in the ranges 100-1000 km? and 1000 — 10,000 km? (Figure 5, table S2). Comparing this results for three-
parameter distributions utilizing the MLE estimation method, Gruss et al. (2022) obtained findings for six data series with no
trend. Among these, the Weibull, GEV, LN3, and P3 distributions were best fitted to the empirical data from sub-catchments

305 with areas ranging from 100 to 1000 km?2. Moreover, as reported by Gruss et al. (2022) the GEV distribution was fitted best
for two catchment areas ranging from 1000 to 10000 km?2. In this study, in the context of NMT samples, the least fitted
distributions to the empirical data were: LN3 (samples with catchment areas in the range of 10-100 km?, 100-1000 km?, 1000-
10,000 km?) and additionally LN3 and GGEV for areas larger than 10,000 km?,

There are no samples with a NT trend for catchments smaller than 10 km?. The GEV distribution best fits to empirical data

310 from catchments with areas in the range 10-100 km?. Conversely, the GGEV distribution has the best fit for catchments in the
ranges of 100-1000 km?, 1000-10,000 km?, and above 10,000 km? (Figure 5, table S2). This is consistent with Silva and
Nascimento (2022) for catchments with areas greater than 10,000 km? like the Gurguéia Rive catchment in Brazil. As they
reported, the GGEV distribution has a better fit than the GEV distribution. Gruss et al. (2022) concluded for Czech Republic
and Poland that the Weibull distribution fits best for catchment areas ranging from 100 to 1000 km?, the Weibull and P3

315 distributions for catchment areas from 1000 to 10,000 km?, and the GEV distribution for catchment areas above 10,000 km?.
In this study, in the context of NT samples, the least fitted distributions to the empirical data are P3 (samples with catchment
areas in the range of 10-100 km?), P3 and LN3 (samples with catchment areas in the range of 100-1000 km?), LN3 (samples
with catchment areas in the range of 1000-10,000 km?), and additionally GEV for >10,000 km? (Figure 5, table S2).

The fewest samples exhibit a PT trend, occurring only in catchments within the ranges of 10-100 km?, 100-1000 km?, and

320 1000-10,000 km?. The GGEV distribution fits best for these samples (Figure 5, table S2). In the context of PT samples, the

least fitted distributions to the empirical data are P3 (samples with catchment areas in the range of 10-100 km?), and P3
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(samples with catchment areas in the range of 100-1000 km?). and additionally GEV (samples with catchment areas in the

range of 1000-10,000 km?) (Figure 5, table S2).

For NMT samples, GEV fits best for catchments under 100 km?, GGEV for 100-10,000 km?, P3 above 10,000 km?; for NT,
325 GEV suits 10-100 km?, GGEV for 100-10,000 km? and over 10,000 km?; and for PT, GGEYV fits for 10-10,000 km?.

4.3. Goodness of fit results in relation to catchment size and peak flow

Next, it was checked whether the relationship between catchment area (A) and registered maximum peak flow (Qp) could
influence the choice of distribution.

7000

5000

Q, [m*/s]
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330 Figure 6. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a no trend and for
four fitting probability distributions (P3, LN3, GEV and GGEV).

Probability distributions determined for NMT samples show a relationship between catchment area size (A) and peak flow
magnitude (Qp), represented by a simple regression line (Figure 6, Table S3). The widest range of A is characterized by the
samples for which the P3 distribution (30 - 20,000 km?) and the GEV distribution (3.5 — 170,000 km?) best fits, while LN3 (35
335 —110,000 km?) and the GGEV (50 — 70,000 km?) fit more limited ranges. Moreover, the widest range of Qp is characterized
by the samples for which the P3 distributions (1.9 - 7,000 m?/s) and GEV (1.6 - 7,000 m?/s) fits best, suggesting that these
distributions are the most flexible in modeling extreme flows for different catchment sizes, while LN3 (8.5 to 6.500 m%/s) and
GGEV (2 to 6,000 m%/s). The P3 and GEV distributions are typical distributions for FFA. These distributions also show the
widest range of applicability in this study. In contrast, the LN3 and GGEV distributions show a more limited applicability
340 (Figure 6, Table S3). Because this appears conflicting with the results in previous sections, similar analysis is done hereafter

but for each trend category separately.
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Figure 7. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a negative trend and
for four fitting probability distributions (P3, LN3, GEV and GGEV).

345 When we focus on the observational series with a negative trend (Figure 7, Table S4), the widest range of area A is
characterized by samples fitted to the distribution GGEV (80 - 180,000 km?), whereas other distributions (P3, LN3, GEV)
have more limited ranges. The widest range of Qp is characterized by samples fitted to the GGEV distribution (5 — 7,000 m?/s),
indicating its flexibility in modeling extreme flows for samples with a detected NT. The P3 and LN3 distributions have
narrower ranges, making them less flexible for samples with a detected NT. This suggests that the GGEV distribution is

350 particularly well-suited for extreme flow events with negative trend. Moreover, the GEV distribution fits much better than the
other three-parameter distributions for samples with NT.
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Figure 8. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a positive trend and
for four fitting probability distributions (P3, LN3, GEV and GGEV).

355  For the positive trend samples (Figure 8, Table S5), the widest range of area A is characterized by samples fitted to the GGEV
distribution (35 - 1,500 km?), while other distributions (P3, LN3, GEV) have more limited ranges. The widest range of Qp is
also characterized by samples fitted to the GGEV distribution (8 - 750 m?/s), indicating its flexibility in modeling extreme
flows. The P3 and LN3 distributions have narrower ranges, making them less flexible for samples with a detected positive
trend. This also confirms that the GGEV distribution has the best fit for data with detected positive trends. In another study on

360 the evaluation of the GEV and LN3 distributions with L-moments estimation, Kousar et al. (2020) concluded for the Sewden
River two locations with catchment areas ranging from 1000-10,000 km?, and above 10,000 km? exhibit a platykurtic
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distribution and fit best to the GEV. In turn, the LN3 distribution was the best fit for three other locations that exhibit a
leptokurtic distribution for areas ranging from 100-1000 km?, 1000-10,000 km?, and above 10,000 km? (Kousar et al., 2020).

4.4 Influence of environmental factors on probability distribution parameters

365 Redundancy analysis (RDA) was performed separately for each distribution to examine whether environmental factors have a
similar impact on the parameters of the distributions.
The independent variables are catchment area ranges: a - micro-catchments, b - meso-catchments, ¢ — macro-catchments, d —
large catchments, e - very large catchments; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative
trend); the nature of the watercourse (L - lowlands, H - highlands, M - mountains); empirical skewness (Skew.) and 4th center
370 moment (4thMoment); empirical kurtosis (Kurt.), sample size (N) (Fig. 9a-9d). The response variables are add. shape (Fig. 9),
location, scale, shape (Fig. 9-12, Table S3),
Since the mean, standard deviation, variance, third moment, and 4thMoment are interrelated, it is essential to carefully select
the set of explanatory variables. It was also confirmed that multicollinearity exists between skewness and kurtosis as
explanatory variables (Variance Inflation Factor, VIF > 10). Collinearity between skewness and kurtosis may result from the
375 fact that both of these measures are defined using the standard deviation (SD). Therefore, RDA was conducted separately for
kurtosis (Fig. 9a, 10a, 11a, 12a) and skewness (Fig. 9b, 10b, 11b, 12b). Additionally, RDA was performed with the inclusion
of catchment area ranges and Kurt. was replaced with the 4thMoment and Skew. (see Figures 9c, 10c, 11c, and 12c).
The decision to replace Kurt. with the 4th Moment was made because both Skew. and Kurt. are functions of the standard
deviation, making them potentially collinear. The use of the Skew. and the 4thMoment can allow for capturing more detailed
380 aspects of the data distribution. The 4thMoment measures the overall Kurt., which is the tail heaviness of the distribution,
while Kurt. is the normalized version of this moment. Following the initial RDA, subsequent analyses considered only the
changes that were not identified in the first analysis. A detailed description of the RDA analyses for the distributions is provided
in the Supplementary Materials Section S4.

The use of topography in modeling Qp helps to uncover the runoff mechanism prevailing in the catchment (Valeo, 2013).

385 4.4.1 GGEV distribution

The first two axes (RDA 1 and RDA 2) explain 54.00% of the variance (45.76% and 8.24%, respectively) (Fig. 9a).The Qp
and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are
related to RDA 1. Shape and add. shape are related to RDA 2. Scale and Location are strongly positive correlated with Qp
(score 0.95) and A (score 0.94). The shape and add. shape are positive related to Kurt. (score 0.90) The add. shape and shape
390 are inversely proportional to N (score -0.14). The H (score -0.68), L (score 0.70), M (score -0.14), PT (score -0.33) and NT
(score 0.25) are correlated with RDA 3. Samples with NMT (score 0.14) do not affect the distribution parameters for add.

shape and shape.
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Fig. 9. RDA results of the relation between environmental factors and sample characteristics and the parameters of GGEV
distribution (scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km?): a - < 10, b - 10-100, ¢ —
100 — 1000, d — 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend);
nature of the watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical
skewness, Kurt. is empirical kurtosis and 4thMoment is a 4™ center moment), sample size (N).

In the second RDA the first two axes (RDA 1 and RDA 2) explain 54.36% of the variance (45.78% and 8.58%, respectively)
(Fig. 9b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are
strongly correlated with RDA 1 and Skew. with RDA 2. The shape and add. shape are positive related to Skew. (0.89). The H
(score -0.69), L (score 0.73) and PT (score -0.29) are correlated with RDA 3. In turn, the M (score 0.30) is correlated with
RDA 4. Samples with NMT (score 0.14) and NT (score -0.18) do not affect the distribution parameters for add. shape and
shape.

Both Skew. and Kurt. (Fig. 9a-b), are correlated with the shape and add. shape parameters, which may support the additional
parameter mechanism described by Nascimento et al. (2016) for this distribution.

In the third RDA the first two axes (RDA 1 and RDA 2) explain 56.19% of the variance (47.19% and 9%, respectively) (Fig.
9c¢). Thus, the explained variance is slightly higher compared to the previous two canonical analyses for the GGEV distribution.
Compared to the previous RDA, more significant changes, as described below, are observed. The Qp (e) and 4thMoment are
strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp and location is strongly
positive correlated with (e) and 4thMoment (Fig. 9¢). This means that higher Qp values correspond to a larger scale parameter
in the GGEV distribution. Larger catchment areas (e) lead to an increase in the location parameter, which shifts the central
point of the distribution. Observing the biplot (Fig. 9a), it is noted that the Kurt. parameter affects the shape and add. shape,
while the 4thMoment influences the location. Meanwhile, the third moment strongly correlates with the scale (not shown on
the graph). An increase in the 4thMoment, which measures the concentration of values around the mean and is also related to
Kurt., indicates an increase in the value of the location parameter. The location parameter determines where the center of the
distribution is located on the number line. The greater the 4thMoment, the higher the location parameter in a heavy-tailed
distribution. This means that, where more extreme values occur, the central tendency of the distribution (measured by the
location parameter) shifts towards these higher values to better reflect the influence of extremes on the distribution. This means
that higher values of the 4thMoment cause the central value or location of these extreme values to shift towards higher values.
If, with an increase in the 4thMoment, the location parameter increases, it means that the center of the distribution shifts to the
right on the number line. In turn, the 3rd central moment correlates with the distribution parameter known as scale because the
scale affects the magnitude of deviations from the mean, and the 3rd central moment measures precisely these deviations.
The shape is positive related to Skew. The add. shape and shape are inversely proportional to N(Fig. 9c). In practice, this might
suggest that with larger N, the distribution becomes less extreme or lighter. The shape parameters likely adjust to reflect a
more stable and less variable distribution as the amount of data increases. Shape and add. shape are negative correlated with
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NT (Fig. 9¢). This may indicate that in situations where there is a downward trend in the data, the distribution becomes less
varied or more flattened. A weak correlation could suggest that with a NT, the values of add. shape and shape may slightly
decrease.
We observe that add. shape is not as strongly correlated with Skew. as shape is. Add. shape serves as a supplementary
430 parameter, and the canonical analysis shown in Fig. 9a-b indicated that add. shape has similar properties to shape. Since the
4thMoment is not associated with RDA2, it will not directly influence shape and add. shape, or its impact will be limited for
the samples examined (Fig. 9a). However, the 4thMoment used to determine Kurt. will cause Kurt. to strongly correlate with
shape parameters (Fig. 9c).
Scale and location are negative correlated with (c) (Fig. 9c). Moreover, (b), (d), H, M, L and PT do not have influence to the
435 distribution parameters (Fig. 9¢). This suggests that terrain topography does not have a direct impact on the parameters of the
GGEV distribution. Additionally, it can be suggested that not all types of catchments influence the shaping of distribution
parameters. Very large catchments (€) have a strong positive impact, while macro-catchments (c) have a weak influence, and
there is no effect on the parameters of meso-catchments (b) and large catchments (d). This may be because distribution
parameters affecting larger areas may not have as strong an impact on smaller catchments, where local effects dominate over
440 the effects associated with distribution parameters (Arnaud et al., 2011; Roodsari and Chandler, 2017). An additional advantage
of the distribution is its weak sensitivity to trends. Only a NT affects the shape parameter and the additional shape parameter.
Shape is correlated with Skew. and Kurt. of the empirical data. This means that the shape parameter influences the asymmetry
and tail distribution of empirical flow data, which is consistent with the description by (Nascimento et al., 2016).
This also means that temporal trends such as NMT and NT do not affect the parameters of the GGEV distribution.
445 In summary, distribution parameters are more closely related to the hydrological characteristics of flows than to geographic or
temporal features.
The RDA analysis indicates that the GGEV distribution is anticipated to be the least sensitive to landscape forms and N.

4.4.2 GEV distribution
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Fig. 10. RDA results of the relation between environmental factors and sample characteristics and the parameters of GEV

450 distribution (scale, shape, location). Descriptions of symbols: catchment area ranges (in km?): a - < 10, b - 10-100, ¢ — 100 — 1000, d
— 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature of the
watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt.
is empirical kurtosis and 4thMoment is a 4t center moment), sample size (N).

The first two axes (RDA 1 and RDA 2) explain 80.50% of the variance (63.51% and 16.99%, respectively) (Fig. 10a). The Qp
455 and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are
related to RDA 1, and shape is related to RDA 2. It exhibits a strong correlation with the scale and location parameters, whereas
this relationship is not observed for the shape parameter (Tabari et al., 2021b). Scale and location are strongly positive
correlated with Qp (score 0.96) and A (score 0.91) (Fig. 10a). This is consistent with the findings of (Villarini and Smith,
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2010). What is particularly noteworthy is that hydrological signatures related to flow magnitude, such as the location and scale
460 parameters, are primarily dependent on A, which significantly influences their values, while other attributes have a lesser
impact on the response variable. This is consistent with previous findings by He et al. (2015), Northrop (2004), and Tyralis et
al. (2019).
The shape is positive related to Kurt. (score 0.93), H (score 0.41), M (score 0.18), and NMT (score 0.22) (Fig. 10a). The shape
is inversely proportional to L (score -0.45) and NT (score -0.21) (Fig. 10a). However, the shape parameter is more likely linked
465 to hydrological processes and meteorological conditions than to catchment area (He et al., 2015). The N (score 0.14) is
correlated with RDA 3 (Fig. 10a).
In the second RDA, the first two axes (RDA 1 and RDA 2) explain 54.36% of the variance (63.60% and 22.86%, respectively)
(Fig. 10b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are
strongly correlated with RDA 1 and Skew. with RDA 2. The shape is positive related to Skew. (score 0.97), NMT (score 0.20),
470 H (score 0.35), and M (score 0.15) (Fig. 10b). Scale and Location are inverse proportional to PT (score -0.06) (Fig. 10b).
In the third RDA, the first two axes (RDA 1 and RDA 2) explain 85.09% of the variance (61.75% and 23.34%, respectively)
(Fig. 10c). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp, e and
4thMoment are strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp (score
0.98) and location is strongly positive correlated with e (score 0.76) and 4thMoment (score 0.83) (Fig. 10c). This is consistent
475  with (Tabari et al., 2021b), which report that the scale parameter of the GEV distribution, representing the deviation around
the mean and serving as an indicator of the variance (Tabari et al., 2021b). The location parameter indicates the center of the
distribution, acting as an indicator of the mean (Tabari et al., 2021b).
The shape is positive related to Skew. (score 0.96) (Fig. 10c). The shape parameter determines the tail behavior of the
distribution (He et al., 2015). Specifically, higher values of the shape parameter lead to heavier tails (Tabari et al., 2021b;
480 Tyralis et al., 2019; Villarini and Smith, 2010). Shape is negative correlated with L (score -0.39), NT (score -0.19), and d
(score -0.11) (Fig. 10c). Scale and location are negative correlated with PT (score -0.05), ¢ (-0.29). The NMT (score 0.19) had
weak effect on shape. In turn, H (score 0.35) and M (score 015) had a weak relation to the shape (Fig. 10c). The shape parameter
of the GEV distribution is correlated with nature (terrain elevation) (Sampaio and Costa, 2021; Tyralis et al., 2019). However,
morphologic characteristics of the catchments in the regression model for the GEV shape parameter is small (Sampaio and
485 Costa, 2021). Capturing the spatial variation of the GEV shape parameter by means of covariates, such as terrain elevation,
remains a challenging task (Sampaio and Costa, 2021). On the other hand, (Ahilan et al., 2012) research confirms that the type
of landscape affects the distribution of GEV. The shape parameter of the GEV distribution determines the behavior of the
upper tail. Specifically, higher values of the shape parameter lead to heavier tails. The shape parameter dependency is mainly
influenced by climatic indices, while other catchment characteristics are less significant (Tyralis et al., 2019). This is consistent
490 with He et al. (2015) which found no relationship between the shape parameter and catchment area, suggesting that
hydrological heterogeneity is implicitly captured by the shape parameter.
Moreover, N (score 0.293), b (score -0.16) is related to RDA 3 (Fig. 10c).
RDA analysis confirms that the shape of the distribution is strongly dependent on the Skew. of the empirical sample (Fig. 10b-
c). The location parameter of the GEV distribution is positively correlated with the weight and the tail distribution in the
495 empirical data.
For the impact of catchment size on GEV parameters, Villarini and Smith (Villarini and Smith, 2010) found that scale and
location are positively correlated, while shape is negatively correlated. The magnitude of the shape parameter of the GEV
distribution depends on the location of the gauge, whether it is in lowlands, highlands, or mountains (Villarini and Smith,
2010).
500 In sample (e), which is a very large catchment, the 4thMoment affects the location parameter and is strongly positively

correlated with the location. In sample (c), the 4thMoment is weakly negatively correlated with the location and with PT.
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Landscape forms and trends, as well as catchment types (with the exception of micro-, meso-, and very large catchments),
have a weak influence on the parameters of this distribution.
The scale parameter of the GEV distribution in FFA is strongly correlated with Qp and MAF (Villarini and Smith, 2010). This
505 relationship is further supported by the use of scale-invariant statistics, which show good correlations with historical flood-
frequency records (Turcotte 1993). However, it is important to note that the scale parameter can vary over time, as
demonstrated by the application of a non-stationary GEV model to account for changing streamflow series (Jiang 2019).
The shape parameter of the GEV distribution in FFA is a critical factor, but its determinants have been elusive (Tyralis 2019).
While it is known to influence the upper tail of the distribution, its relationship with catchment attributes is not well understood.
510 Morrison and Smith (2002) found that the shape parameter is not dependent on catchment morphological parameters or land
cover properties, suggesting that other factors may be at play. Sampaio (2021) and Kumar (2003) both highlight the importance
of the GEV distribution in regional FFA, but do not specifically address the relationship between the shape parameter and
highlands area. Indeed, in their work (Northrop, 2004), they analyzed the relationship between the location, scale, and shape
parameters of the GEV distribution, among other factors, of annual maxima and catchment descriptors like area and base flow
515 index. In this study, the MLE method was also used for estimating distribution parameters. The work indicates a linear
relationship between the location and scale parameters, which means that as the catchment area increases, so do these
parameters. Current research confirms this trend (Fig. 10a-b). On the other hand, regarding the shape parameter, Northrop
(2004) states that there is no trend. Current studies show a negative trend, which is explained by Tyralis etal. (2019). According
to Tyralis et al. (2019), the shape parameter exhibits a negative linear correlation with the catchment mean elevation. As

520 elevation increases, the value of the shape parameter slightly decreases (Fig. 10a-c).

4.4.3 LN3 distribution

a) b) c)
< o <«
o =3 =3
NT N d
A EN N
NT
A
z S . B A ~— scale Mo
g = o~ docation = A
- 2
~ 8 eA & ol o
Lol = =l 4thMoment P
g g =
g g N H/‘
[ é 4
shap /
4
hape
. A o A Seew
< - H Skew.
04 RDAT1 (38.71%) 10 04 RDAT (38.98%) 10 e
04 RDA 1 (42.60%) 1.0

Fig. 11. RDA results of the relation between environmental factors and sample characteristics and the parameters of LN3
distribution (scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km?): a - <10, b - 10-100, ¢ — 100
— 1000, d — 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature

525  of the watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness,
Kurt. is empirical kurtosis and 4thMoment is a 4" center moment), sample size (N).

The first two axes (RDA 1 and RDA 2) explain 46.61% of the variance (38.71% and 7.90%, respectively) (Fig. 11a).The Qp

and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are

related to RDA 1, and shape is related to RDA 2. Scale and location are strongly positive correlated with Qp (score 0.98) and
530 A (score 0.64) (Fig. 11a). The shape parameter of the LN3 has found to be correlated with extreme flows and catchment area

(Haktanir and Horlacher, 1993; Smith, 1989).

The shape is negative related to Kurt. (score -0.55) and H (score -0.51) (Fig. 11a). The shape is inversely proportional to N

(score 0.37) (Fig. 11a). Location is weakly correlation to NMT (score 0.2) (Fig. 11a). The shape is weakly correlated to N
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(score 0.37) and inverse proportional to H (score -0.51). The PT (score 0.21), NT (score -0.28), M (score 0.2), and L (score -
535 0.56) are correlated with RDA 3 (Fig. 11a).
In the second RDA, the first two axes (RDA 1 and RDA 2) explain 54.09% of the variance (38.98% and 15.11%, respectively)
(Fig. 11b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are
strongly correlated with RDA 1 and Skew. with RDA 2. The shape is negative related to Skew. (score -0.85) and H (score -
0.39) (Fig. 11b). The location is weakly inversely proportional to N (scores 0.33) (Fig. 11b). Location is weakly correlated to
540 NMT (score 0.2) (Fig. 11b). The PT (score 0.18), NT (score -0.22), M (score 0.2), and L (score -0.39) are correlated with RDA
3 (Fig. 11b).
In the third RDA, the first two axes (RDA 1 and RDA 2) explain 57.72% of the variance (42.60% and 15.12%, respectively)
(Fig. 11c). Compared to the previous RDA, more significant changes, as described below, were observed. The Qp, (e) and
4thMoment are strongly correlated with RDA 1 and Skew. with RDA 2 (Fig. 11c). Scale is strongly positive correlated with
545  (e) and location is strongly positive correlated with Qp and 4thMoment (Fig. 11c). The shape is negative related to Skew. and
weakly correlated with H, while positive with (d). Location is negative correlated with NT (Fig. 11c). Scale is negative
correlated with (b) and (c), while positive correlated with N (Fig. 11c). As reported (Kamal et al., 2017) the larger the N, the
better the result for the LN3. Moreover, M, L, NMT and PT do not have influence on the distribution parameters (Fig. 11c).

4.4.4 P3 distribution
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550 Fig.12. RDA results of the relation between environmental factors and sample characteristics and the parameters of P3 distribution
(scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km?): a - <10, b - 10-100, ¢ — 100 — 1000, d —
1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature of the
watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt.
is empirical kurtosis and 4thMoment is a 4t center moment), sample size (N).

555
The first two axes (RDA 1 and RDA 2) explain 66.72% of the variance (62.38% and 4.34%, respectively) (Fig. 12a).The Qp
and A are strongly correlated with RDA 1 and N with RDA 2. According to the response variables, scale and location are
related to RDA 1, and shape is related to RDA 2. Scale is strongly positive correlated with Qp (score 0.99) and Location is
strongly positive correlated with A (score 0.88) (Fig. 12a). This contrasts with the findings of Hebson and Wood (1986); Hu
560 et al. (2020), Farooq et al. (2018), Flynn et al. (2006); Ribeiro-Correa and Rousselle (1993) who concluded that the scale

parameter of the P3 is typically strongly correlated with increasing catchment area.
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The shape is strongly negative correlated with N (score -0.72) (Fig. 12a). In turn, the shape is weakly negative correlated with
Kurt. (score -0.4) and H (score -0.26). The shape is weakly positive correlated with L (score 0.27) (Fig. 12a). The M (score
0.08), NT (score -0.17), PT (score 0.12), and NMT (score -0.22) are correlated with RDA 3 (Fig. 12a).

565 Inthe second RDA, the first two axes (RDA 1 and RDA 2) explain 66.72% of the variance (62.35% and 10.40%, respectively)
(Fig. 12b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are
strongly correlated with RDA 1, and Skew. and N with RDA 2 (Fig. 12a). The shape is strongly negatively correlated with
Skew. (score -0.97) and N (score -0.52) (Fig. 12a). The shape is weakly negative correlated with H (score -0.17), M (score -
0.04) and PT (score -0.09). The shape is weakly positive correlated with L (score 0.17) (Fig. 12a). The NMT (score 0.18) and

570 NT (score -0.17) are weakly correlated with location (Fig. 12a).

In the third RDA, the first two axes (RDA 1 and RDA 2) explain 73.30% of the variance (61.78% and 11.52%, respectively)
(Fig. 12c). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp, 4thMoment
and (e) are strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp, and location
is strongly positive correlated with (e) and 4thMoment (Fig. 12c). In contrast to the results shown in Fig. 12a-b Hebson and

575 Wood, 1986; Hu et al., 2020, Farooq et al., 2018; Flynn et al., 2006; Ribeiro-Correa and Rousselle, 1993 came to the same
conclusions, stating that the scale parameter of the P3 is indeed strongly correlated with increasing catchment area in FFA.
The larger the Qp, the greater the scale, and the larger the 4thMoment — especially for the largest catchments (e) — the greater
the location (Fig. 12c). In the current analysis, Qp and MAF are strongly correlated with the scale (Fig. 13-14).
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580 Fig. 13. Scatter plots of the P3 distribution parameters versus predictor variable MAF.
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Fig. 14. Scatter plots of the P3 distribution parameters versus predictor variable Qp.

In previous work by (Hu et al., 2020), the location parameter of the log-P3 distribution was not found to be correlated
significantly with flow, type of trend, landscape, or sample size, which is consistent with current findings. However, as noted
585 by Hu et al. (2020), the location parameter of the P3 distribution is also not significantly correlated with catchment area. Our
findings confirm this but also show that it is positively and significantly correlated only for large catchments (A>10,000 km?).
The shape parameter is inversely proportional to Skew. and N (Fig. 12c¢). This means that with smaller sample sizes and lower
Skew., the shape parameter is larger. As reported by Hu et al. (2020), Skew. in the log-P3 distribution is very sensitive to N.
On the other hand, Jia et al. (2023) found that a trimmed L-moments method allowed for good P3 parameter estimation even
590 for samples with small sizes and skewness greater than twice the coefficient of variation.
The parameters (b) and (d) have a weak positive relation to the shape parameter (Fig. 12c). In catchments (b) and (d), the shape
parameter increases. The location parameter is weakly negatively correlated with (c) and PT (Fig. 12c). Catchments (c) and
detected PT lead to a decrease in the location parameter (Fig. 12c). In contrast, H, L, M, NT, and NMT do not influence the
distribution parameters (Fig. 12c). Thus, distribution parameters are not sensitive to landscape forms or the absence of trends
595 or negative trends. This contrasts with the findings of Farooq et al. (2018), Jain and Singh (1987), and Vogel and McMartin
(1991), who concluded that the shape parameter of the P3 distribution is strongly correlated with the NMT. Moreover, Valeo
and Rasmussen (2000), who investigated the log-P3 distribution, states that not only the catchment area as an independent
variable determines the Qp rate, but also the topographical distribution.
Konrad (2021) highlighted the importance of understanding trends in annual peak streamflow, which can be influenced by

600 factors such as reservoir operation and urban development (Konrad and Restivo, 2021).

4.4.5 Key points on the influence of environment factors

The following points summarize key findings regarding the relationships between environmental factors and the parameters
of the studied probability distributions:
e GGEV and P3 distributions tend to have the parameters H, M, L located outside RDA1.
605 e GGEV and P3 share a common feature of a negative correlation between N and shape, while GEV and LN3 exhibit more
complex correlation patterns.
e The GGEV, GEV, and LN3 distributions show similar correlations between the parameters A, c, and e in the context of
RDA1, whereas P3 differs in this respect.
e GGEV and GEV share a pattern where NMT appears in RDA2. LN3 shows a broader presence in RDA1 and RDA2, while
610 P3 has a different configuration.
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e The pattern for GGEV differs from the other distributions because, in GEV, LN3, and P3, skewness is distinctly
concentrated only in RDA2.
Based on the above comparison, the GGEV distribution shows some similarities with other distributions regarding the
occurrence and correlation of the distribution parameters. However, there are differences in certain aspects, such as the
615 distribution of parameters in the principal components and parameter correlations, which indicates unique characteristics of
GGEV compared to GEV, LN3, and P3. GGEV often differs from other distributions in how its parameters spread within the
principal component space, which may be significant when modeling and interpreting extreme flow data analysis results.

4.5. Overparameterization check

In order to evaluate the overparameterization or overfitting problem, results are hereafter summarized for the 4 steps of the
620 methodology outlined in Figure 3.
Step 1
Out of the two distributions (Exp and LN2), only LN2 demonstrates the best fit across all 678 profiles based on accuracy
measures. Nevertheless, we performed the tests for both distributions. Additionally, these distributions were evaluated against
three- and four-parameter distributions (GEV and GGEV) using the same criteria.
625 Step 2
The GEV distribution, analyzed for 172 profiles, exhibited shape parameter values consistently near zero, remaining below
one. In turn, the fitted LN2 distribution has a shape parameter value greater than 1 for only seven stations. In contrast, the
GGEV distribution has a shape parameter value greater than 1 for a smaller number of four stations. It is worth noting that the
additional shape parameter reached a value greater than 1 for 45 profiles out of the 281 analyzed. However, as shown by the
630 RDA analysis, the contribution of the add. shape parameter relative to the shape parameter is smaller. This may suggest that
the add. shape parameter primarily compensates for the limitations of the shape parameter in distributions with lighter tails.
The details are in Supplementary Materials Tables S3-S5. This is confirmed by the research of Nascimento et al. (2016), who
state that when the additional shape parameter is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more
effective for modeling extreme events that may occur more frequently than lighter-tailed distributions would predict.
635 Step3
The Kolmogorov-Smirnov test comparing theoretical quantiles (Exp distribution) with empirical data found no significant
differences (p-value > 0.05) for 372 out of 678 profiles, indicating agreement between the distributions. Similarly, when
comparing empirical quantiles to random samples (Exp distribution), 279 profiles showed no significant differences,
suggesting a comparable nature of the empirical and random distributions in these cases. This corresponds to a fit rate of 74.9%
640 (279/372).
A better fit was obtained for the LN2 distribution. The Kolmogorov-Smirnov test comparing theoretical quantiles (LN2
distribution) with empirical data found no significant differences (p-value > 0.05) for 678 out of 678 profiles, indicating
agreement between the distributions. Similarly, when comparing empirical quantiles to random samples (LN2 distribution),
661 profiles showed no significant differences, suggesting a comparable nature of the empirical and random distributions in
645 these cases. This corresponds to a fit rate of 97.5% (678/661).
A much better fit was obtained for the GEV and GGEV distributions. The Kolmogorov-Smirnov test comparing theoretical
quantiles (GEV distribution) with empirical data found no significant differences (p-value > 0.05) for 172 out of 172 profiles,
indicating agreement between the distributions. Similarly, when comparing empirical quantiles to random samples (GEV
distribution), 171 profiles showed no significant differences, suggesting a comparable nature of the empirical and random
650 distributions in these cases. This corresponds to a fit rate of 99.4% (171/172). The Kolmogorov-Smirnov test comparing
theoretical quantiles (GGEV distribution) with empirical data found no significant differences (p-value > 0.05) for 281 out of

281 profiles, indicating agreement between the distributions. Similarly, when comparing empirical quantiles to random
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samples (GGEV distribution), 281 profiles showed no significant differences, suggesting a comparable nature of the empirical
and random distributions in these cases. This corresponds to a fit rate of 100% (281/281).

655 The results showed that distributions with higher parameters (three or more, such as GEV and GGEV) not only provided
slightly better fit in some cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting
(in the empirical data vs. random quantiles scenario).
Step4
The GEV and GGEV distributions were subjected to K-Fold cross-validation alongside the LN2 and Exp distributions.

660 The K-Fold cross-validation results are presented as the percentage distribution of outcomes across individual intervals relative

to the total number of results (Table 1).

Table 1. Percentage distribution of K-Fold cross-validation results across individual intervals relative to the total number of

outcomes.

MAE MAE RMSE RMSE (1001 - 10
Distribution (0-100) (101 - 1000) (0-100) RMSE (101 - 1000) | 000)
2LN 94.8% 5.22% 92.37% 7.63% 0%
Exp 94.8% 5.22% 92.37% 4.24% 3.39%
GEV 95.09% 4.91% 100% 0% 0%
GGEV 94.9% 5.12% 98.48% 1.51% 0%

Explanation: MAE — mean absolute error, RMSE - root mean square error, 0-100 — best-fitting model, 101-1000 — well-fitting model, 1001—
665 10,000 — poorest-fitting model.

MAE and RMSE values vary significantly, ranging from very low (close to 0) to much higher values (e.g., 1000). High values
suggest that the model predicts river flows less accurately for certain rivers. The intervals represent the quality of model fit,
with 0-100 indicating the best fit, 101-1000 well fitting model, and 1001-10,000 the poorest fit. The GEV distribution
670 achieved the highest percentage of best-fitting models (95.09% for MAE and 100% for RMSE), indicating superior
performance compared to the other distributions. The GGEV distribution also showed strong results, with 94.9% of models
falling in the best-fit category for MAE and 98.48% for RMSE. The LN2 and Exp distributions performed similarly, with over
94% of results in the best-fit category for both MAE and RMSE. However, the Exp distribution showed a small proportion
(3.39%) of poorest-fitting models in the RMSE category, which was not observed for the other distributions. Overall, the GEV
675 and GGEV distributions demonstrated the most consistent performance across both error metrics.
To summarize, Step 4 showed that the GGEV and GEV distributions have excellent predictive efficiency (better than
distributions with fewer parameters), demonstrating that in most cases analyzed, they are quite robust to overparameterization
and overfitting.
Although the study used observational series of 30 years or more, the number of profiles analyzed in highland and mountainous
680 areas was considerably lower than those in lowland areas. Furthermore, the number of observational series exhibiting a positive

trend in the analyzed region was limited.

5 Conclusions

The main findings of this research can be summarized as follows:
1. Based on the trend criterion, the GGEV distribution, compared to the analyzed three-parameter distributions, and the
685 GEV distribution compared to the other three-parameter distributions were the best fit for most samples.
2. Based on the trend criterion and catchment size it was found that the GEV distribution is best suited for micro- and
meso-catchments, while the GGEV distribution is ideal for macro- to large-catchments where the series exhibits a
trend (either negative trend or no trend). The P3 distribution is preferred for very large catchments but only when the
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sample has no trend. In contrast, for samples with a positive trend, the GGEV distribution performs best across meso-

690 to very large catchments.

3. The GGEV distribution, in comparison with the analyzed P3, LN3, and GEV distributions, was not flexible regarding
the parameters A and Qp for samples with no trend, but it was flexible for samples with detected positive or negative
trends.

4. Catchment size types influence the distribution parameters, with the most types affecting the parameters of GEV and

695 LN3, and the least types affecting the parameters of GGEV and P3.

5. Additionally, the parameters of P3 and GGEV distributions are not correlated with landscape forms.

6. Our findings showed that some patterns between the P3 and GEV distributions were identical to those with GGEV.
A similar pattern between GGEV and P3 was observed: highland, lowland and midland topographies were outside
RDAL, indicating no influence of these factors on the scale and location parameters, and N was negatively correlated

700 with the shape parameters. The GGEV distribution had a similar pattern to the GEV distribution, where the no trend

samples appeared in RDA2 for both distributions.

7. It was found that adding the shape parameter of the GGEV distribution primarily compensates for the limitations of
the shape parameter in distributions with lighter tails.

8. Using the Kolmogorov-Smirnov test it was found that the GEV and GGEV not only provided slightly better fit in

705 some cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting (in the

empirical data vs. random quantiles scenario) in comparison to Exp and LN2. Furthermore, the robustness of GEV
and GGEV distributions to overparameterization and overfitting is confirmed by K-Fold cross validation.

9. Based on the above, in the era of climate change, distributions like GGEV are expected to be better suited under the
presence of trends, having a clear performance benefit.

710 The results of this study highlight several promising avenues for future research. One potential direction is the further
exploration of the GGEV distribution in the context of various hydrological and meteorological phenomena. Given its superior
performance in fitting most samples and its sensitivity to trends, especially under non-stationary conditions like climate change,
future studies could examine its applicability across different geographical regions and climatic conditions.

The findings on the influence of catchment types on distribution parameters indicate that more research is needed to refine our

715 understanding of how landscape characteristics interact with hydrological distributions. A deeper exploration into the
relationship between catchment area characteristics, especially in varied topographies and land-use patterns, could yield more
universal insights. Expanding the range of predictor variables used in modeling, beyond trend detection, nature of catchment,

catchment area, and the hydrological characteristics, might also improve the accuracy and flexibility of distribution selection.
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