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Abbreviations and acronyms in alphabetical order 

a - micro-catchments  

b- meso-catchments  

c - macro-catchments  

d - large catchments 15 

e - very large catchments  

A - catchment area [km2] 

Exp – exponential distribution 

FFA - Flood frequency analysis 

GEV - generalized extreme value distribution 20 

GGEV - Dual Gamma Generalized Extreme Value Distribution 

GOF - Goodness of fit  test 

H – highland 

Kurt. - kurtosis 

L – lowland 25 

LN2 - 2-parameter log-normal distribution 

LN3 - 3-parameter log-normal distribution 

M - mountain 

MAE - Mean Absolute Error  

MAF - mean annual maximum flow  30 

MK - The Mann-Kendall trend test  

MLE - maximum likelihood estimation 

N - sample size  

NMT - no trend  

NT - negative trend 35 

P3 - Pearson III type distribution 

PT - positive trend 

Qp - Peak flow  

RDA - Redundancy Analysis  

RMSE - Root mean square error  40 

SD - standard deviation  
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Skew. - empirical skewness 

Var - variation  

VIF - Variance Inflation Factor 

Abstract.  Climate change has already impacted global water resources, and it is expected to have even more severe 45 

consequences in the future. Advancing climate change will necessitate the use of new distributions that are more flexible in 

adapting to changes in stationarity or the presence of trends in the sample. In this work, we compare the best fit of three-

parameter distributions such as lognormal, Generalized Extreme Value (GEV), Pearson type III, and a new extension of GEV 

- Dual Gamma Generalized Extreme Value Distribution (GGEV) under different trends in the time series and by adding criteria 

such as catchment area and peak flow magnitude. The research pertains to catchments in the temperate climate zone of Poland, 50 

covering 678 water gauges in 340 rivers. Based on a trend criterion, the GGEV distribution compared to the analyzed three-

parameter distributions, and the GEV distribution compared to the other three-parameter distributions, were the best fit for 

most samples. Based on the trend criterion and catchment size it was found that the GEV distribution is best suited for micro- 

and meso-catchments, while the GGEV distribution is ideal for macro- to large-catchments where the series exhibits a trend, 

either positive or negative. The major benefit of the GGEV distribution is its flexibility when the data are influenced by 55 

temporal non-stationarities. The additional shape parameter compensates for the limitations of the other shape parameter in 

distributions with lighter tails. Analysis of the dependence relationships between environmental indicators such as geographic, 

physiographic and hydrological indicators and the distribution parameters is less conclusive. In order to test the risk of 

overparameterization and overfitting for the distributions with more parameters, Kolmogorov-Smirnov tests and K-Fold cross 

validation shows that the GEV and GGEV distributions perform better compared to the exponential and two-parameter 60 

lognormal distributions. As an overall conclusion, the study showed that for the analyzed samples in the temperate climate 

zone in the era of climate change, distributions that better respond to trends, like GGEV, are more likely to be applied. 

1 Introduction 

Climate change has already impacted global water resources, and it is expected to have even more severe consequences in the 

future (Dakhlaoui et al., 2019; Pokhrel et al., 2021; Połomski and Wiatkowski, 2023; Tomczyk et al., 2023; Willems, 2013). 65 

The significance of climate change lies in the substantial impacts it brings, including the increased occurrence of floods (Gruss 

et al., 2023; Tabari et al., 2021b). In modeling extreme hydrological events, such as floods, stochastic modeling is commonly 

used. This approach relies on historical data and employs probability distributions (Gruss et al., 2022; Młyński et al., 2020) to 

account for the uncertainty and variability of these phenomena (Szulczewski and Jakubowski, 2018). Such methods include 

the at-site flood frequency analysis [FFA] (Cassalho et al., 2018). The choice of probability distribution should be verified 70 

through the assumptions of stationarity and independence, as any deviation can lead to biased distributions and potentially 

catastrophic consequences, such as inappropriate designs that jeopardize property and human life (Ologhadien, 2021). 

However, the assumption of stationarity has faced increasing challenges due to the intensification of climate change and human 

activities (Gruss et al., 2022; Jiang and Kang, 2019; Milly et al., 2008). Many studies present series consisting of annual 

maximums where, for some water gauges, the assumption of stationarity, randomness, or non-monotonic trend (NMT) is not 75 

met (Cassalho et al., 2018; Szulczewski and Jakubowski, 2018). Advancing climate change will necessitate the use of new 

distributions that are more flexible in adapting to changes in stationarity or the presence of trends in the sample. 

In many countries, two- and three-parameter distributions are used to estimate the magnitude and frequency of annual 

maximum streamflow (AMS) (e.g. Valentini et al., 2024 ; Gruss et al., 2022; Młyński et al., 2018; Pitlick, 1994; Rutkowska 

et al., 2015; Rutkowska et al., 2015;  Bezak et al., 2014; Morlot et al., 2019; Šraj et al., 2016; Ul Hassan et al., 2019; Berton 80 

and Rahmani, 2024). The Pearson Type III distribution provides the best fit to both annual minimum and annual average 

streamflows, assuming the series is stationary but with a linear trend (Vogel and Wilson, 1996). There are also many studies 
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among them on Pearson type 3 (P3) (Cassalho et al., 2018) log Pearson Type 3 (LP3) (Berton and Rahmani, 2024; Morlot et 

al., 2019) and log-normal distributions in at-site FFA (Cassalho et al., 2018). In recent decades, a significant amount of research 

has been dedicated to the GEV distribution. Extreme events are often better modeled using distributions with heavy tails 85 

(Karczewski et al., 2022; Karczewski and Michalski, 2022), a characteristic of the GEV distribution (Cassalho et al., 2018; 

Morlot et al., 2019; Otiniano et al., 2019; Rutkowska et al., 2015). 

However, some extreme event data do not follow the GEV distribution because they require a more asymmetric distribution 

or one with a heavier tail. As a result, new classes of probability distributions have been developed that extend beyond the 

GEV distribution, such as the Dual Gamma GEV distribution (GGEV) (Otiniano et al., 2019). GGEV distribution is regarded 90 

as highly flexible for several reasons: 1. It introduces an additional parameter that adjusts tail weight and skewness, making it 

more adaptable to diverse datasets. 2. This added flexibility allows the GGEV distribution to capture the nuances of empirical 

data more effectively than the standard GEV distribution. 3. As a result, the GGEV distribution is often preferred in practical 

applications where accurate modeling of complex data is essential (Nascimento et al., 2016). The additional shape parameter 

enables the GGEV distribution to adapt to various data characteristics, especially in terms of tail behavior. Notably, when this 95 

parameter is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more effective for modeling extreme events 

that may occur more frequently than lighter-tailed distributions would predict (E Silva and Do Nascimento, 2022). 

Next to the influence of non-stationarities, it is well-known that various environmental factors, including land use, may 

significantly influence the tail of flood frequency distributions, although this depends on the region. Pitlick (1994) found that 

the mean annual flood is most closely correlated with watershed area, but did not find an influence of other measures of 100 

catchment physiography on the differences in flood frequency distributions. In contrast, research by Ahilan et al. (2012) 

confirms that the type of landscape influences the GEV distribution. Other research by Sampaio and Costa (2021) and Tyralis 

et al. (2019) has shown that morphological catchment characteristics correlate with these distributions. Also Kusumastuti 

(2007) highlighted the role of environmental factors in influencing flood frequency and the occurrence of flood events. 

Although single factors may not always correlate well with the distribution parameters, it may be the combined influence of 105 

multiple factors that explain the differences in flood quantiles (Allamano et al., 2009). Understanding this influence may offer 

valuable insights for regionalization (He et al., 2015) and reduce uncertainties in inferences made using regional FFA 

frameworks (Hu et al., 2020; Tyralis et al., 2019). In this study, the assumption is made that if environmental factors have an 

influence on distribution parameters, one can expect dependence relationships between the parameters when different 

distributions are calibrated to the flood data. 110 

The aim of the study is to analyze the fit of the GGEV distribution versus three-parameter distributions (GEV, LN3, P3) to 

empirical data for river catchments in Poland. The study also aims to analyze the consistency of patterns exhibited by 

environmental factors concerning the parameters of the examined distributions and to conduct tests for overparameterization 

and overfitting of the analyzed distributions. 

2 Study area 115 

The research area spans 678 water gauge situated within the drainage basins of the Dniester, Dunajec, Neman, Oder, Pregoła, 

Vistula, and other rivers that flow into the Baltic Sea and, covering the territory of Poland in Central Europe (Figure 1). The 

area of Poland is located within a temperate climate zone. 
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Figure 1. Location of analyzed 678 water gauges (Source: hydrographic map of Poland). 120 

Depending on the size of the catchment area in the studied area, micro-catchments (A < 10 km2), meso-catchments (10 ≤ A < 

100 km2), macro-catchments (100 ≤ A < 1,000 km2), large catchments (1,000 ≤ A < 10,000 km2), and very large catchments 

(A > 10,000 km2) were distinguished. The presented division criterion was adopted based on (Bertola et al., 2020). The least 

number of micro-catchments was recorded (for 2 stream gauge profiles), and the highest number of macro-catchments (for 

388 stream gauge profiles). In between were very large catchments, meso-catchments, and large catchments, in amounts of 125 

50, 68, and 170 stream gauge profiles, respectively (Fig. 1). 
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Figure 2. The terrain characteristics of the analyzed 678 stream gauge profiles consist of lowlands, uplands, and mountains (Source: 

hydrographic map of Poland). 

The terrain of the studied area is uneven. The majority of stream gauge profiles (as many as 582 stream gauge profiles) are 130 

located in lowland areas (Fig. 2). These are catchments situated within the provinces of the Central Polish Lowland, Eastern 

Baltic-Belarusian Lowland, and the Czech Massif, on the Polish Uplands. A smaller quantity, specifically 86 stream gauge 

profiles, were located in highland areas. They are located within the provinces of the Polish Uplands, Czech Massif, and the 

Western Carpathians with the Western and Northern Podkarpacie, as well as the Eastern Carpathians with the Eastern 

Podkarpacie. Stream gauge profiles located in mountainous areas, totalling 10, are situated within the provinces of the Czech 135 

Massif and the Western Carpathians with the Western and Northern Podkarpacie, as well as the Eastern Carpathians with the 

Eastern Podkarpacie. 

3 Methods 

3.1 Data collection and extraction of flow extremes 

For 678 gauge stations located in the basins of the Vistula, Oder, coastal rivers, Pregoła, and Neman, Dniester, Dunajec, 140 

maximum annual flows were collected. The source of the data (flows) is the Institute of Meteorology and Water Management 

- National Research Institute (IMGW-PIB). These data have been processed. The gauge stations for which only series equal 

to or longer than 30 years could be collected were retained (Gruss et al., 2022; Tabari et al., 2021a). The data periods used for 

analysis varied across stations, from 30 to 70. In this way, maximum annual flows were collected for 678 stations. The data 

are compiled in the hydrological year, which for Poland begins in November and ends in October. For each hydrological year, 145 

the annual maximum flow was extracted. These are hereafter referred to as peak flows (Qp) and are often associated with 

floods or extreme hydrological events (Gruss et al., 2022; Langridge et al., 2020; Northrop, 2004). Qp help in understanding 

the maximum capacity of rivers or streams to handle water, which is essential for infrastructure planning, floodplain 
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management, and disaster mitigation efforts (Langridge et al., 2020). The Qp were utilized in this study for calibrating and 

evaluating the probability distributions. 150 

Per station, the mean annual flood or mean annual maximum flow (MAF) represents the average of the Qp over the period of 

record (Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). Hydrologists often analyze mean annual maximum flows to 

understand the long-term characteristics of river systems, including flood frequency, river behavior, and water resource 

management (Merz and Blöschl, 2009; Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). The MAF was utilized in this study 

for the redundancy analysis. 155 

3.2 Trend detection 

For all analyzed time series, a test was conducted to ascertain the presence of a trend. The Mann-Kendall test was utilized for 

this purpose. This allowed grouping the obtained distributions into three categories: without a trend, with a positive trend, and 

with a negative trend. 

The Mann-Kendall test (MK) is frequently used to detect monotonic trend in long time series of hydrological data (Cassalho 160 

et al., 2018; Gruss et al., 2022, 2023; Rutkowska, 2015; Svensson et al., 2005).  

The null hypothesis is that the data are identically distributed, the alternative hypothesis is that the data follow a monotonic 

trend. A two sided test was performed and the significance level was set at 5%.  

3.3 Extreme value distributions 

This study considered the following type of extreme value distributions: the four-parameter GGEV distribution and the three-165 

parameter distributions GEV, LN3, and P3.  

 

The GGEV probability density function (PDF) proposed by (Nascimento et al., 2016), is given by:  

𝑓(𝑥;  𝜇;  𝜎;  𝜉;  𝛿) = {

𝜎−1

𝛤(𝛿)
[1 +

𝜉(𝑥−𝜇)

𝜎
]

−(
𝛿

𝜉
)−1

exp {−[1 +
𝜉(𝑥−𝜇)

𝜎
]

−
1

𝜉} , 𝜉 ≠ 0 

𝜎−1

𝛤(𝛿)
𝑒𝑥𝑝{−𝛿[(𝑥 − 𝜇)/𝜎]}𝑒𝑥𝑝 {−𝑒𝑥𝑝 {[−

𝑥−𝜇

𝜎
]}, 𝜉 → 0

,     (1) 

where: 170 

μ – location parameter 

σ – scale parameter  

ξ – shape parameter 

δ – shape parameter of GGEV extension. 

This GGEV is a four-parameter extension of the (GEV) distribution with an additional shape parameter (δ). The additional 175 

parameter allows for varying tail weights and skewness, making it more adaptable to different types of data (Nascimento et 

al., 2016). A Bayesian Monte Carlo Markov Chain (MCMC) approach is used to estimate the posterior parameters of the 

GGEV distribution. . For the additional shape parameter δ, the optimal value is assessed after using the Akaike Information 

Criterion (AIC) (E Silva and Do Nascimento, 2022; Nascimento et al., 2016). The estimation of the parameters and fitting of 

probability distribution was done using the following R package: ‘MCMC4Extremes’. 180 

 

The Generalized Extreme Value Distribution (GEV) was used in many studies (Abida and Ellouze (2008), Bezak, Brilly and 

Šraj (2014), Cassalho et al. (2018), Kidson and Richards (2005), Szulczewski and Jakubowski (2018)). The GEV PDF function 

is given in equation (2): 

𝑓(𝑥) = exp [−{1 +
𝑠(𝑥−𝛼)

𝑏
}−1/𝑠],          (2) 185 

where: 

α, b, s are location, scale and shape parameters, respectively. 
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for 1+s(x-α)/b>0, where b>0.  

The parameters of this distribution were estimated by the maximum likelihood method (MLE), as described by Smith (1985). 

The estimation of the parameters and fitting of GEV distribution was done using the following R packages: ‘evd’ and 190 

‘fExtremes’. 

The LN3 distribution function is given by the formula (3): 

𝑓(𝑥) =
1

(𝑥−𝛼)𝜎𝑦√2𝜋

exp {−
1

2𝜎𝑦
2 [log(𝑥 − 𝛼) − 𝜇𝑦]2},        (3) 

where: 

μy, 𝜎𝑦
2 , α are shape, scale and location, parameters, respectively.  195 

The LN3 is similar to the two-parameter LN2 distribution, except that x is subtracted by a value α in the former, which 

represents the lower bound (Cassalho et al., 2018). The parameters of this distribution were estimated by MLE as shown by 

Meeker and Escobar (1998). The estimation of the parameters and fitting of probability distribution was done using the 

following R packages: ‘EnvStats’ and 'weibulltools'. For the MLE method used to estimate the distribution parameters a 

confidence level of 0.95 was assumed. 200 

The PDF of the P3 distribution is given by (4): 

𝑓(𝑥) =
1

|𝑠|𝛼𝛤(𝛼)
|𝑥 − 𝜆|𝛼−1𝑒−

𝑥−𝜆

𝑠 ,           (4) 

for s≠0, a>0 and 
𝑥−𝜆

𝑠
 ≥0. 

Where: 

α, s, λ are shape, scale and location parameters, respectively. 205 

The MLE was used to estimate the parameters for the P3 distribution. In the gamma distribution developed by Becker and 

Klößner (2017), this function allows negative scale parameters to allow for negative skewness. The estimation of the 

parameters and fitting of probability distribution was done using the R package ‘PearsonDS’. 

3.4 Accuracy measures 

The goodness of fit of the four probability distributions to the empirical data was evaluated based on the accuracy measures 210 

Mean Absolute Error (MAE) and Root mean square error (RMSE). The MAE is recommended for leptokurtic distributions 

(MAE) and RMSE is preferred for platykurtic distributions (Karunasingha, 2022). Among the 678 samples, the kurtosis value 

exceeded 3 for 560 samples (leptokurtic distributions), while kurtosis less than 3 was observed in 118 samples (platykurtic 

distributions).  

 215 

3.5 Redundancy analysis 

Redundancy analysis (RDA) was applied as a canonical technique, to investigate the influence of environmental variables and 

sample characteristics on the parameters of the extreme value distributions. It aims to identify common patterns and key factors 

affecting the distribution parameters. 

The environmental factors examined included the watershed area, categorised by catchment type, and the nature of the 220 

watercourse (Lowlands, Highlands, Mountains) (Bertola et al., 2020; Han et al., 2023; Tyralis et al., 2019). Sample 

characteristics considered included the highest Qp, MAF, sample size, empirical moments of standard deviation (SD), variance 

(Var), skewness, kurtosis, third-moment center, fourth-moment center (which measures the intensity of the distribution tails) 

of the Qp, and trend measures. 
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RDA was performed separately for each distribution. The final RDA model was selected by evaluating environmental variables 225 

and sample characteristics using the Variance Inflation Factor (VIF). RDA, standardized by response variables (center and 

standardize) and environmental variables (center), was performed using Canoco 5.12. 

3.6. Assessing overparameterization and overfitting 

A distribution with more parameter does not necessarily lead to a more accurate distribution. It obviously will lead to a better 

goodness-of-fit because due to the higher flexibility during the calibration, but more parameters will lead to higher uncertainty 230 

in parameter calibration. So, the three- and more parameter distribution may lead to "overparameterization" and "overfitting". 

With more parameters, there is also a risk that distribution extrapolations may be more erroneous  (Alsadat et al., 2023). 

In order to evaluate whether the increased complexity of multi-parameter distributions offers a substantial improvement in fit 

or merely results in overfitting, the procedure shown in Figure 3 was applied. 

The one- and two-parameter distributions of the exponential (Exp) and 2-lognormal (LN2) distributions were designated to 235 

serve as a reference point for evaluating the overparameterization and overfitting in the three- and four-parameter distributions 

GEV and GGEV.  

 

 

Figure 3. Workflow for evaluating overparameterization and overfitting in multi-parameter probability distributions. 240 

The first analysis focused on examining whether the theoretical GEV and GGEV distributions significantly alter the shape 

parameter compared to the LN2 distribution (Fig. 3: Step 2) (Raynal-Villasenor and Raynal-Gutierrez, 2014). This 

investigation aimed to determine whether the GEV and GGEV distributions are more complex (overparameterized) than 

necessary and whether fitting these distributions improves their ability to accurately predict extreme values, particularly for 

very high return periods. 245 
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In the second analysis, the Kolmogorov-Smirnov test was used (Kim et al., 2017) in two testing variants: 1. theoretical quantiles 

with empirical data and 2. empirical data with random quantiles (Fig.3: Step 3). This was done for the GEV, GGEV, Exp, and 

LN2 distributions. The hypothesis was that a p-value less than 0.05 would suggest rejecting the hypothesis that the samples 

come from the same distribution. The KS test was used to determine whether multi-parameter distributions (such as GEV and 

GGEV) might provide slightly better fits in some cases (variant 1) and whether they could be more prone to overfitting (variant 250 

2) (Ozonur et al., 2021). 

In the third analysis, the K-fold cross-validation (split sample test) was used to validate the distribution's performance (Fig. 3: 

Step 4) (Kim et al., 2017; Xu and Goodacre, 2018). In this study, we employed the k-fold cross-validation technique, 

specifically dividing the data series into 5 equal folds (also called 5-folds) (Rohani et al., 2018; Yadav and Shukla, 2016). The 

distribution is trained on k−1 subsets and tested on the remaining subset. This process is repeated k times until each subset has 255 

been used as the test set (Prusty et al., 2022). K-fold cross-validation is often used for comparing and selecting the best 

distribution for a given predictive problem. This method allows for evaluating which distribution generalizes best to new data 

(Brunner et al., 2018; Jaiswal et al., 2022). Cross-validation was performed for GEV and GGEV distributions. To check the 

results, the following measures were used: MAE (for leptokurtic distributions), RMSE (for platykurtic distributions) 

(Karunasingha, 2022). In response to the question of how these analyses would be conducted for distributions with fewer than 260 

three parameters, two additional distributions – Exp and LN2 – were selected for testing. Finally, a comparison of cross-

validation results between GEV, GGEV and Exp, LN2 distributions was conducted. For the GEV and GGEV, only the 

distribution with the best fit following the MAE and RMSE, was considered in that analysis. That means that the total number 

of tested samples was 678 for each of the Exp and LN2 distributions. In contrast, there were 172 samples for the GEV 

distribution and 281 for the GGEV distribution.  265 

The methods for determining the Exp and LN2 distributions and their goodness-of-fit assessment are presented in 

Supplementary Material S1 and S2. The generation of random samples for the Exp, LN2, GEV and GGEV distributions are 

described in the Supplementary Material S3. 

4 Results and discussion 

4.1 Goodness of fit results in relation to the trend category 270 

Among the 678 samples, a no trend (NMT) was observed in the highest number of cases (446). Conversely, a negative trend 

(NT) was identified in 200 samples, while the least number of samples exhibited a positive trend (PT) (32 samples) (Figure 4, 

Table S1). 
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Figure. 4. Count of four fitting distributions (GEV, GGEV, LN3, P3) with marked trend categories. 275 

In the case of no trend (NMT), the accuracy measures show a good fit for the LN3 distribution to 61 samples, the Pearson III 

type distribution to 96 samples, the GEV distribution to 111 samples, and the GGEV distribution to 178 samples (Figure 4). 

In instances of a negative trend (NT), the accuracy measures led to fitting the LN3 distribution to 27 samples, the Pearson III 

type distribution to 32 samples, the GEV distribution to 53 samples, and the GGEV distribution to 88 samples (Figure 4). In 

turn, for a positive trend (PT), the accuracy measures resulted in fitting the Pearson III type distribution to 4 samples, the LN3 280 

distribution to 5 samples, the GEV distribution to 8 samples, and the GGEV distribution to 15 samples (Figure 4). In NMT 

samples, the GGEV distribution was the most frequently identified and the LN3 distribution was the least common. Similarly, 

for NT and PT samples, the GGEV distribution was most frequently observed, while the LN3 distribution was least frequently 

encountered in NT samples, and the P3 distribution was the least frequently observed in PT samples (Figure 4). Among the 

four examined distributions, the GGEV distribution predominates in general. The GGEV distribution prevails in terms of count 285 

for all trend categories (Figure 4, Table S1) when compared to the three-parameter distributions. This is consistent with the 

findings by Nascimento et al., (2016), who found for maximum monthly flow data that the best model was the generalized 

GGEV model rather than the GEV model. 

Focusing solely on the three-parameter distributions (P3, LN3, and GEV), it is evident that the GEV distribution is most 

frequently fitted best, followed by the P3 and LN3 distributions (for 172, 132, and 93 samples, respectively). This applies to 290 

both NMT and NT samples. In contrast, for the PT samples, , the GEV distribution has the highest number of best-fit samples 

among the three-parameter distributions, followed by the LN3 distribution and, finally, the P3 distribution (Figure 4, Table 
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S1). This is consistent with Kumar et al. (2003), who argue that the GEV distribution in terms of the L-moments was the best 

fit compared to P3. Bezak et al. (2014) obtained a completely different result, indicating that the best results were obtained 

with the P3 distribution in terms of the MLE. 295 

4.2. Goodness of fit results in relation to the trend and catchment size categories 

It was checked whether a similar pattern of results is obtained when considering catchment area size ranges (Figure 5). 

 

Figure 5. Count of four fitting distributions (P3, LN3, GEV and GGEV) with marked trend and catchment size categories. 

For the NMT samples, the best-fitted distribution is the GEV distribution for samples where the catchment area is less than 10 300 

km2, in the range 10 – 100 km2, and P3 above 10,000 km2. Meanwhile, the GGEV distribution is the best fit for samples with 

catchment areas in the ranges 100-1000 km2 and 1000 – 10,000 km2 (Figure 5, table S2). Comparing this results for three-

parameter distributions utilizing the MLE estimation method, Gruss et al. (2022) obtained findings for six data series with no 

trend. Among these, the Weibull, GEV, LN3, and P3 distributions were best fitted to the empirical data from sub-catchments 

with areas ranging from 100 to 1000 km2. Moreover, as reported by Gruss et al. (2022) the GEV distribution was fitted best 305 

for two catchment areas ranging from 1000 to 10000 km2. In this study, in the context of NMT samples, the least fitted 

distributions to the empirical data were: LN3 (samples with catchment areas in the range of 10-100 km2, 100-1000 km2, 1000-

10,000 km2) and additionally LN3 and GGEV for areas larger than 10,000 km2. 

There are no samples with a NT trend for catchments smaller than 10 km2. The GEV distribution best fits to empirical data 

from catchments with areas in the range 10-100 km2. Conversely, the GGEV distribution has the best fit for catchments in the 310 

ranges of 100-1000 km2, 1000-10,000 km2, and above 10,000 km2 (Figure 5, table S2). This is consistent with Silva and 

Nascimento (2022) for catchments with areas greater than 10,000 km2 like the Gurguéia Rive catchment in Brazil. As they 

reported, the GGEV distribution has a better fit than the GEV distribution. Gruss et al. (2022) concluded for Czech Republic 

and Poland that the Weibull distribution fits best for catchment areas ranging from 100 to 1000 km2, the Weibull and P3 

distributions for catchment areas from 1000 to 10,000 km2, and the GEV distribution for catchment areas above 10,000 km2. 315 

In this study, in the context of NT samples, the least fitted distributions to the empirical data are P3 (samples with catchment 

areas in the range of 10-100 km2), P3 and LN3 (samples with catchment areas in the range of 100-1000 km2), LN3 (samples 

with catchment areas in the range of 1000-10,000 km2), and additionally GEV for >10,000 km2  (Figure 5, table S2). 

The fewest samples exhibit a PT trend, occurring only in catchments within the ranges of 10-100 km2, 100-1000 km2, and 

1000-10,000 km2. The GGEV distribution fits best for these samples (Figure 5, table S2). In the context of PT samples, the 320 

least fitted distributions to the empirical data are P3 (samples with catchment areas in the range of 10-100 km2), and P3 
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(samples with catchment areas in the range of 100-1000 km2). and additionally GEV (samples with catchment areas in the 

range of 1000-10,000 km2) (Figure 5, table S2). 

For NMT samples, GEV fits best for catchments under 100 km², GGEV for 100-10,000 km², P3 above 10,000 km²; for NT, 

GEV suits 10-100 km², GGEV for 100-10,000 km² and over 10,000 km²; and for PT, GGEV fits for 10-10,000 km². 325 

4.3. Goodness of fit results in relation to catchment size and peak flow 

Next, it was checked whether the relationship between catchment area (A) and registered maximum peak flow (Qp) could 

influence the choice of distribution. 

 

Figure 6. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a no trend and for 330 
four fitting probability distributions (P3, LN3, GEV and GGEV). 

Probability distributions determined for NMT samples show a relationship between catchment area size (A) and peak flow 

magnitude (Qp), represented by a simple regression line (Figure 6, Table S3). The widest range of A is characterized by the 

samples for which the P3 distribution (30 - 20,000 km²) and the GEV distribution (3.5 – 170,000 km²) best fits, while LN3 (35 

– 110,000 km²) and the GGEV (50 – 70,000 km²) fit more limited ranges. Moreover, the widest range of Qp is characterized 335 

by the samples for which the P3 distributions (1.9 - 7,000 m³/s) and GEV (1.6 - 7,000 m³/s) fits best, suggesting that these 

distributions are the most flexible in modeling extreme flows for different catchment sizes, while LN3 (8.5 to 6.500 m3/s) and 

GGEV (2 to 6,000 m3/s). The P3 and GEV distributions are typical distributions for FFA. These distributions also show the 

widest range of applicability in this study. In contrast, the LN3 and GGEV distributions show a more limited applicability 

(Figure 6, Table S3). Because this appears conflicting with the results in previous sections, similar analysis is done hereafter 340 

but for each trend category separately. 
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Figure 7. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a negative trend and 

for four fitting probability distributions (P3, LN3, GEV and GGEV). 

When we focus on the observational series with a negative trend (Figure 7, Table S4), the widest range of area A is 345 

characterized by samples fitted to the distribution GGEV (80 - 180,000 km²), whereas other distributions (P3, LN3, GEV) 

have more limited ranges. The widest range of Qp is characterized by samples fitted to the GGEV distribution (5 – 7,000 m³/s), 

indicating its flexibility in modeling extreme flows for samples with a detected NT. The P3 and LN3 distributions have 

narrower ranges, making them less flexible for samples with a detected NT. This suggests that the GGEV distribution is 

particularly well-suited for extreme flow events with negative trend. Moreover, the GEV distribution fits much better than the 350 

other three-parameter distributions for samples with NT. 

 

Figure 8. Relationship between catchment area (A) and peak flow magnitude (Qp) for observational series with a positive trend and 

for four fitting probability distributions (P3, LN3, GEV and GGEV). 

For the positive trend samples (Figure 8, Table S5), the widest range of area A is characterized by samples fitted to the GGEV 355 

distribution (35 - 1,500 km²), while other distributions (P3, LN3, GEV) have more limited ranges. The widest range of Qp is 

also characterized by samples fitted to the GGEV distribution (8 - 750 m³/s), indicating its flexibility in modeling extreme 

flows. The P3 and LN3 distributions have narrower ranges, making them less flexible for samples with a detected positive 

trend. This also confirms that the GGEV distribution has the best fit for data with detected positive trends. In another study on 

the evaluation of the GEV and LN3 distributions with L-moments estimation, Kousar et al. (2020) concluded for the Sewden 360 

River two locations with catchment areas ranging from 1000-10,000 km2, and above 10,000 km2 exhibit a platykurtic 
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distribution and fit best to the GEV. In turn, the LN3 distribution was the best fit for three other locations that exhibit a 

leptokurtic distribution for areas ranging from 100-1000 km2, 1000-10,000 km2, and above 10,000 km2 (Kousar et al., 2020). 

4.4 Influence of environmental factors on probability distribution parameters 

Redundancy analysis (RDA) was performed separately for each distribution to examine whether environmental factors have a 365 

similar impact on the parameters of the distributions.  

The independent variables are catchment area ranges: a - micro-catchments, b - meso-catchments, c – macro-catchments, d – 

large catchments, e - very large catchments; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative 

trend); the nature of the watercourse (L - lowlands, H - highlands, M - mountains); empirical skewness (Skew.) and 4th center 

moment (4thMoment); empirical kurtosis (Kurt.), sample size (N) (Fig. 9a-9d). The response variables are add. shape (Fig. 9), 370 

location, scale, shape (Fig. 9-12, Table S3),  

Since the mean, standard deviation, variance, third moment, and 4thMoment are interrelated, it is essential to carefully select 

the set of explanatory variables. It was also confirmed that multicollinearity exists between skewness and kurtosis as 

explanatory variables (Variance Inflation Factor, VIF > 10). Collinearity between skewness and kurtosis may result from the 

fact that both of these measures are defined using the standard deviation (SD). Therefore, RDA was conducted separately for 375 

kurtosis (Fig. 9a, 10a, 11a, 12a) and skewness (Fig. 9b, 10b, 11b, 12b). Additionally, RDA was performed with the inclusion 

of catchment area ranges and Kurt. was replaced with the 4thMoment and Skew. (see Figures 9c, 10c, 11c, and 12c).  

The decision to replace Kurt. with the 4th Moment was made because both Skew. and Kurt. are functions of the standard 

deviation, making them potentially collinear. The use of the Skew. and the 4thMoment can allow for capturing more detailed 

aspects of the data distribution. The 4thMoment measures the overall Kurt., which is the tail heaviness of the distribution, 380 

while Kurt. is the normalized version of this moment. Following the initial RDA, subsequent analyses considered only the 

changes that were not identified in the first analysis. A detailed description of the RDA analyses for the distributions is provided 

in the Supplementary Materials Section S4. 

The use of topography in modeling Qp helps to uncover the runoff mechanism prevailing in the catchment (Valeo, 2013). 

4.4.1 GGEV distribution  385 

The first two axes (RDA 1 and RDA 2) explain 54.00% of the variance (45.76% and 8.24%, respectively) (Fig. 9a).The Qp 

and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are 

related to RDA 1. Shape and add. shape are related to RDA 2. Scale and Location are strongly positive correlated with Qp 

(score 0.95) and A (score 0.94). The shape and add. shape are positive related to Kurt. (score 0.90) The add. shape and shape 

are inversely proportional to N (score -0.14). The H (score -0.68), L (score 0.70), M (score -0.14), PT (score -0.33) and NT 390 

(score 0.25) are correlated with RDA 3. Samples with NMT (score 0.14) do not affect the distribution parameters for add. 

shape and shape. 

a) b) c) 
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Fig. 9. RDA results of the relation between environmental factors and sample characteristics and the parameters of GGEV 

distribution (scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km²): a - < 10, b - 10-100, c – 

100 – 1000, d – 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); 395 
nature of the watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical 

skewness, Kurt. is empirical kurtosis and 4thMoment is a 4th center moment), sample size (N). 

In the second RDA the first two axes (RDA 1 and RDA 2) explain 54.36% of the variance (45.78% and 8.58%, respectively) 

(Fig. 9b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are 

strongly correlated with RDA 1 and Skew. with RDA 2. The shape and add. shape are positive related to Skew. (0.89). The H 400 

(score -0.69), L (score 0.73) and PT (score -0.29) are correlated with RDA 3. In turn, the M (score 0.30) is correlated with 

RDA 4. Samples with NMT (score 0.14) and NT (score -0.18) do not affect the distribution parameters for add. shape and 

shape. 

Both Skew. and Kurt. (Fig. 9a-b), are correlated with the shape and add. shape parameters, which may support the additional 

parameter mechanism described by Nascimento et al. (2016) for this distribution. 405 

In the third RDA the first two axes (RDA 1 and RDA 2) explain 56.19% of the variance (47.19% and 9%, respectively) (Fig. 

9c). Thus, the explained variance is slightly higher compared to the previous two canonical analyses for the GGEV distribution. 

Compared to the previous RDA, more significant changes, as described below, are observed. The Qp (e) and 4thMoment are 

strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp and location is strongly 

positive correlated with (e) and 4thMoment (Fig. 9c). This means that higher Qp values correspond to a larger scale parameter 410 

in the GGEV distribution. Larger catchment areas (e) lead to an increase in the location parameter, which shifts the central 

point of the distribution. Observing the biplot (Fig. 9a), it is noted that the Kurt. parameter affects the shape and add. shape, 

while the 4thMoment influences the location. Meanwhile, the third moment strongly correlates with the scale (not shown on 

the graph). An increase in the 4thMoment, which measures the concentration of values around the mean and is also related to 

Kurt., indicates an increase in the value of the location parameter. The location parameter determines where the center of the 415 

distribution is located on the number line. The greater the 4thMoment, the higher the location parameter in a heavy-tailed 

distribution. This means that, where more extreme values occur, the central tendency of the distribution (measured by the 

location parameter) shifts towards these higher values to better reflect the influence of extremes on the distribution. This means 

that higher values of the 4thMoment cause the central value or location of these extreme values to shift towards higher values. 

If, with an increase in the 4thMoment, the location parameter increases, it means that the center of the distribution shifts to the 420 

right on the number line. In turn, the 3rd central moment correlates with the distribution parameter known as scale because the 

scale affects the magnitude of deviations from the mean, and the 3rd central moment measures precisely these deviations.  

The shape is positive related to Skew. The add. shape and shape are inversely proportional to N(Fig. 9c). In practice, this might 

suggest that with larger N, the distribution becomes less extreme or lighter. The shape parameters likely adjust to reflect a 

more stable and less variable distribution as the amount of data increases. Shape and add. shape are negative correlated with 425 
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NT (Fig. 9c). This may indicate that in situations where there is a downward trend in the data, the distribution becomes less 

varied or more flattened. A weak correlation could suggest that with a NT, the values of add. shape and shape may slightly 

decrease. 

We observe that add. shape is not as strongly correlated with Skew. as shape is. Add. shape serves as a supplementary 

parameter, and the canonical analysis shown in Fig. 9a-b indicated that add. shape has similar properties to shape. Since the 430 

4thMoment is not associated with RDA2, it will not directly influence shape and add. shape, or its impact will be limited for 

the samples examined (Fig. 9a). However, the 4thMoment used to determine Kurt. will cause Kurt. to strongly correlate with 

shape parameters (Fig. 9c). 

Scale and location are negative correlated with (c) (Fig. 9c). Moreover, (b), (d), H, M, L and PT do not have influence to the 

distribution parameters (Fig. 9c). This suggests that terrain topography does not have a direct impact on the parameters of the 435 

GGEV distribution. Additionally, it can be suggested that not all types of catchments influence the shaping of distribution 

parameters. Very large catchments (e) have a strong positive impact, while macro-catchments (c) have a weak influence, and 

there is no effect on the parameters of meso-catchments (b) and large catchments (d). This may be because distribution 

parameters affecting larger areas may not have as strong an impact on smaller catchments, where local effects dominate over 

the effects associated with distribution parameters (Arnaud et al., 2011; Roodsari and Chandler, 2017). An additional advantage 440 

of the distribution is its weak sensitivity to trends. Only a NT affects the shape parameter and the additional shape parameter.  

Shape is correlated with Skew. and Kurt. of the empirical data. This means that the shape parameter influences the asymmetry 

and tail distribution of empirical flow data, which is consistent with the description by (Nascimento et al., 2016).  

This also means that temporal trends such as NMT and NT do not affect the parameters of the GGEV distribution. 

In summary, distribution parameters are more closely related to the hydrological characteristics of flows than to geographic or 445 

temporal features.  

The RDA analysis indicates that the GGEV distribution is anticipated to be the least sensitive to landscape forms and N. 

4.4.2 GEV distribution 

a) b) c) 

  

 

Fig. 10. RDA results of the relation between environmental factors and sample characteristics and the parameters of GEV 

distribution (scale, shape, location). Descriptions of symbols: catchment area ranges (in km²): a - < 10, b - 10-100, c – 100 – 1000, d 450 
– 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature of the 

watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt. 

is empirical kurtosis and 4thMoment is a 4th center moment), sample size (N). 

The first two axes (RDA 1 and RDA 2) explain 80.50% of the variance (63.51% and 16.99%, respectively) (Fig. 10a). The Qp 

and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are 455 

related to RDA 1, and shape is related to RDA 2. It exhibits a strong correlation with the scale and location parameters, whereas 

this relationship is not observed for the shape parameter (Tabari et al., 2021b). Scale and location are strongly positive 

correlated with Qp (score 0.96) and A (score 0.91) (Fig. 10a). This is consistent with the findings of (Villarini and Smith, 
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2010). What is particularly noteworthy is that hydrological signatures related to flow magnitude, such as the location and scale 

parameters, are primarily dependent on A, which significantly influences their values, while other attributes have a lesser 460 

impact on the response variable. This is consistent with previous findings by He et al. (2015), Northrop (2004), and Tyralis et 

al. (2019).  

The shape is positive related to Kurt. (score 0.93), H (score 0.41), M (score 0.18), and NMT (score 0.22) (Fig. 10a). The shape 

is inversely proportional to L (score -0.45) and NT (score -0.21) (Fig. 10a). However, the shape parameter is more likely linked 

to hydrological processes and meteorological conditions than to catchment area (He et al., 2015). The N (score 0.14) is 465 

correlated with RDA 3 (Fig. 10a). 

In the second RDA, the first two axes (RDA 1 and RDA 2) explain 54.36% of the variance (63.60% and 22.86%, respectively) 

(Fig. 10b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are 

strongly correlated with RDA 1 and Skew. with RDA 2. The shape is positive related to Skew. (score 0.97), NMT (score 0.20), 

H (score 0.35), and M (score 0.15) (Fig. 10b). Scale and Location are inverse proportional to PT (score -0.06) (Fig. 10b). 470 

In the third RDA, the first two axes (RDA 1 and RDA 2) explain 85.09% of the variance (61.75% and 23.34%, respectively) 

(Fig. 10c). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp, e and 

4thMoment are strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp (score 

0.98) and location is strongly positive correlated with e (score 0.76) and 4thMoment (score 0.83) (Fig. 10c). This is consistent 

with (Tabari et al., 2021b), which report that the scale parameter of the GEV distribution, representing the deviation around 475 

the mean and serving as an indicator of the variance (Tabari et al., 2021b). The location parameter indicates the center of the 

distribution, acting as an indicator of the mean (Tabari et al., 2021b). 

The shape is positive related to Skew. (score 0.96) (Fig. 10c). The shape parameter determines the tail behavior of the 

distribution (He et al., 2015). Specifically, higher values of the shape parameter lead to heavier tails (Tabari et al., 2021b; 

Tyralis et al., 2019; Villarini and Smith, 2010). Shape is negative correlated with L (score -0.39), NT (score -0.19), and d 480 

(score -0.11) (Fig. 10c). Scale and location are negative correlated with PT (score -0.05), c (-0.29). The NMT (score 0.19) had 

weak effect on shape. In turn, H (score 0.35) and M (score 015) had a weak relation to the shape (Fig. 10c). The shape parameter 

of the GEV distribution is correlated with nature (terrain elevation) (Sampaio and Costa, 2021; Tyralis et al., 2019). However, 

morphologic characteristics of the catchments in the regression model for the GEV shape parameter is small (Sampaio and 

Costa, 2021). Capturing the spatial variation of the GEV shape parameter by means of covariates, such as terrain elevation, 485 

remains a challenging task (Sampaio and Costa, 2021). On the other hand, (Ahilan et al., 2012) research confirms that the type 

of landscape affects the distribution of GEV. The shape parameter of the GEV distribution determines the behavior of the 

upper tail. Specifically, higher values of the shape parameter lead to heavier tails. The shape parameter dependency is mainly 

influenced by climatic indices, while other catchment characteristics are less significant (Tyralis et al., 2019). This is consistent 

with He et al. (2015) which found no relationship between the shape parameter and catchment area, suggesting that 490 

hydrological heterogeneity is implicitly captured by the shape parameter.  

Moreover, N (score 0.293), b (score -0.16) is related to RDA 3 (Fig. 10c). 

RDA analysis confirms that the shape of the distribution is strongly dependent on the Skew. of the empirical sample (Fig. 10b-

c). The location parameter of the GEV distribution is positively correlated with the weight and the tail distribution in the 

empirical data. 495 

For the impact of catchment size on GEV parameters, Villarini and Smith (Villarini and Smith, 2010) found that scale and 

location are positively correlated, while shape is negatively correlated. The magnitude of the shape parameter of the GEV 

distribution depends on the location of the gauge, whether it is in lowlands, highlands, or mountains (Villarini and Smith, 

2010). 

In sample (e), which is a very large catchment, the 4thMoment affects the location parameter and is strongly positively 500 

correlated with the location. In sample (c), the 4thMoment is weakly negatively correlated with the location and with PT. 
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Landscape forms and trends, as well as catchment types (with the exception of micro-, meso-, and very large catchments), 

have a weak influence on the parameters of this distribution. 

The scale parameter of the GEV distribution in FFA is strongly correlated with Qp and MAF (Villarini and Smith, 2010). This 

relationship is further supported by the use of scale-invariant statistics, which show good correlations with historical flood-505 

frequency records (Turcotte 1993). However, it is important to note that the scale parameter can vary over time, as 

demonstrated by the application of a non-stationary GEV model to account for changing streamflow series (Jiang 2019). 

The shape parameter of the GEV distribution in FFA is a critical factor, but its determinants have been elusive (Tyralis 2019). 

While it is known to influence the upper tail of the distribution, its relationship with catchment attributes is not well understood. 

Morrison and Smith (2002) found that the shape parameter is not dependent on catchment morphological parameters or land 510 

cover properties, suggesting that other factors may be at play. Sampaio (2021) and Kumar (2003) both highlight the importance 

of the GEV distribution in regional FFA, but do not specifically address the relationship between the shape parameter and 

highlands area. Indeed, in their work (Northrop, 2004), they analyzed the relationship between the location, scale, and shape 

parameters of the GEV distribution, among other factors, of annual maxima and catchment descriptors like area and base flow 

index. In this study, the MLE method was also used for estimating distribution parameters. The work indicates a linear 515 

relationship between the location and scale parameters, which means that as the catchment area increases, so do these 

parameters. Current research confirms this trend (Fig. 10a-b). On the other hand, regarding the shape parameter, Northrop 

(2004) states that there is no trend. Current studies show a negative trend, which is explained by Tyralis et al. (2019). According 

to Tyralis et al. (2019), the shape parameter exhibits a negative linear correlation with the catchment mean elevation. As 

elevation increases, the value of the shape parameter slightly decreases (Fig. 10a-c). 520 

4.4.3 LN3 distribution 

a) b) c) 

  
 

Fig. 11. RDA results of the relation between environmental factors and sample characteristics and the parameters of LN3 

distribution (scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km²): a - <10, b - 10-100, c – 100 

– 1000, d – 1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature 

of the watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness, 525 
Kurt. is empirical kurtosis and 4thMoment is a 4th center moment), sample size (N). 

The first two axes (RDA 1 and RDA 2) explain 46.61% of the variance (38.71% and 7.90%, respectively) (Fig. 11a).The Qp 

and A are strongly correlated with RDA 1 and Kurt. with RDA 2. According to the response variables, scale and location are 

related to RDA 1, and shape is related to RDA 2. Scale and location are strongly positive correlated with Qp (score 0.98) and 

A (score 0.64) (Fig. 11a). The shape parameter of the LN3 has found to be correlated with extreme flows and catchment area 530 

(Haktanir and Horlacher, 1993; Smith, 1989).  

The shape is negative related to Kurt. (score -0.55) and H (score -0.51) (Fig. 11a). The shape is inversely proportional to N 

(score 0.37) (Fig. 11a). Location is weakly correlation to NMT (score 0.2) (Fig. 11a). The shape is weakly correlated to N 
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(score 0.37) and inverse proportional to H (score -0.51). The PT (score 0.21), NT (score -0.28), M (score 0.2), and L (score -

0.56) are correlated with RDA 3 (Fig. 11a). 535 

In the second RDA, the first two axes (RDA 1 and RDA 2) explain 54.09% of the variance (38.98% and 15.11%, respectively) 

(Fig. 11b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are 

strongly correlated with RDA 1 and Skew. with RDA 2. The shape is negative related to Skew. (score -0.85) and H (score -

0.39) (Fig. 11b). The location is weakly inversely proportional to N (scores 0.33) (Fig. 11b). Location is weakly correlated to 

NMT (score 0.2) (Fig. 11b). The PT (score 0.18), NT (score -0.22), M (score 0.2), and L (score -0.39) are correlated with RDA 540 

3 (Fig. 11b). 

In the third RDA, the first two axes (RDA 1 and RDA 2) explain 57.72% of the variance (42.60% and 15.12%, respectively) 

(Fig. 11c). Compared to the previous RDA, more significant changes, as described below, were observed. The Qp, (e) and 

4thMoment are strongly correlated with RDA 1 and Skew. with RDA 2 (Fig. 11c). Scale is strongly positive correlated with 

(e) and location is strongly positive correlated with Qp and 4thMoment (Fig. 11c). The shape is negative related to Skew. and 545 

weakly correlated with H, while positive with (d). Location is negative correlated with NT (Fig. 11c). Scale is negative 

correlated with (b) and (c), while positive correlated with N (Fig. 11c). As reported (Kamal et al., 2017) the larger the N, the 

better the result for the LN3. Moreover, M, L, NMT and PT do not have influence on the distribution parameters (Fig. 11c). 

4.4.4 P3 distribution 

a) b) c) 

 

 

 

Fig.12. RDA results of the relation between environmental factors and sample characteristics and the parameters of P3 distribution 550 
(scale, shape, add. shape, location). Descriptions of symbols: catchment area ranges (in km²): a - <10, b - 10-100, c – 100 – 1000, d – 

1000-10000, e - > 10000; flow peak (Qp); trend (NMT is no trend, PT is positive trend and NT is negative trend); nature of the 

watercourse (L - lowlands, H - highlands, M - mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt. 

is empirical kurtosis and 4thMoment is a 4th center moment), sample size (N). 

 555 

The first two axes (RDA 1 and RDA 2) explain 66.72% of the variance (62.38% and 4.34%, respectively) (Fig. 12a).The Qp 

and A are strongly correlated with RDA 1 and N with RDA 2. According to the response variables, scale and location are 

related to RDA 1, and shape is related to RDA 2. Scale is strongly positive correlated with Qp (score 0.99) and Location is 

strongly positive correlated with A (score 0.88) (Fig. 12a). This contrasts with the findings of Hebson and Wood (1986); Hu 

et al. (2020), Farooq et al. (2018), Flynn et al. (2006); Ribeiro‐Correa and Rousselle (1993) who concluded that the scale 560 

parameter of the P3 is typically strongly correlated with increasing catchment area. 
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The shape is strongly negative correlated with N (score -0.72) (Fig. 12a). In turn, the shape is weakly negative correlated with 

Kurt. (score -0.4) and H (score -0.26). The shape is weakly positive correlated with L (score 0.27) (Fig. 12a). The M (score 

0.08), NT (score -0.17), PT (score 0.12), and NMT (score -0.22) are correlated with RDA 3 (Fig. 12a). 

In the second RDA, the first two axes (RDA 1 and RDA 2) explain 66.72% of the variance (62.35% and 10.40%, respectively) 565 

(Fig. 12b). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp and A are 

strongly correlated with RDA 1, and Skew. and N with RDA 2 (Fig. 12a). The shape is strongly negatively correlated with 

Skew. (score -0.97) and N (score -0.52) (Fig. 12a). The shape is weakly negative correlated with H (score -0.17), M (score -

0.04) and PT (score -0.09). The shape is weakly positive correlated with L (score 0.17) (Fig. 12a). The NMT (score 0.18) and 

NT (score -0.17) are weakly correlated with location (Fig. 12a). 570 

In the third RDA, the first two axes (RDA 1 and RDA 2) explain 73.30% of the variance (61.78% and 11.52%, respectively) 

(Fig. 12c). Compared to the previous RDA, more significant changes, as described below, are observed. The Qp, 4thMoment 

and (e) are strongly correlated with RDA 1 and Skew. with RDA 2. Scale is strongly positive correlated with Qp, and location 

is strongly positive correlated with (e) and 4thMoment (Fig. 12c). In contrast to the results shown in Fig. 12a-b Hebson and 

Wood, 1986; Hu et al., 2020, Farooq et al., 2018; Flynn et al., 2006; Ribeiro‐Correa and Rousselle, 1993 came to the same 575 

conclusions, stating that the scale parameter of the P3 is indeed strongly correlated with increasing catchment area in FFA. 

The larger the Qp, the greater the scale, and the larger the 4thMoment – especially for the largest catchments (e) – the greater 

the location (Fig. 12c). In the current analysis, Qp and MAF are strongly correlated with the scale (Fig. 13-14). 

 

Fig. 13. Scatter plots of the P3 distribution parameters versus predictor variable MAF. 580 
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Fig. 14. Scatter plots of the P3 distribution parameters versus predictor variable Qp. 

In previous work by (Hu et al., 2020), the location parameter of the log-P3 distribution was not found to be correlated 

significantly with flow, type of trend, landscape, or sample size, which is consistent with current findings. However, as noted 

by Hu et al. (2020), the location parameter of the P3 distribution is also not significantly correlated with catchment area. Our 585 

findings confirm this but also show that it is positively and significantly correlated only for large catchments (A>10,000 km2). 

The shape parameter is inversely proportional to Skew. and N (Fig. 12c). This means that with smaller sample sizes and lower 

Skew., the shape parameter is larger. As reported by Hu et al. (2020), Skew. in the log-P3 distribution is very sensitive to N. 

On the other hand, Jia et al. (2023) found that a trimmed L-moments method allowed for good P3 parameter estimation even 

for samples with small sizes and skewness greater than twice the coefficient of variation. 590 

The parameters (b) and (d) have a weak positive relation to the shape parameter (Fig. 12c). In catchments (b) and (d), the shape 

parameter increases. The location parameter is weakly negatively correlated with (c) and PT (Fig. 12c). Catchments (c) and 

detected PT lead to a decrease in the location parameter (Fig. 12c). In contrast, H, L, M, NT, and NMT do not influence the 

distribution parameters (Fig. 12c). Thus, distribution parameters are not sensitive to landscape forms or the absence of trends 

or negative trends. This contrasts with the findings of Farooq et al. (2018), Jain and Singh (1987), and Vogel and McMartin 595 

(1991), who concluded that the shape parameter of the P3 distribution is strongly correlated with the NMT. Moreover, Valeo 

and Rasmussen (2000), who investigated the log-P3 distribution, states that not only the catchment area as an independent 

variable determines the Qp rate, but also the topographical distribution. 

Konrad (2021) highlighted the importance of understanding trends in annual peak streamflow, which can be influenced by 

factors such as reservoir operation and urban development (Konrad and Restivo, 2021). 600 

4.4.5 Key points on the influence of environment factors 

The following points summarize key findings regarding the relationships between environmental factors and the parameters 

of the studied probability distributions: 

• GGEV and P3 distributions tend to have the parameters H, M, L located outside RDA1.  

• GGEV and P3 share a common feature of a negative correlation between N and shape, while GEV and LN3 exhibit more 605 

complex correlation patterns.  

• The GGEV, GEV, and LN3 distributions show similar correlations between the parameters A, c, and e in the context of 

RDA1, whereas P3 differs in this respect.  

• GGEV and GEV share a pattern where NMT appears in RDA2. LN3 shows a broader presence in RDA1 and RDA2, while 

P3 has a different configuration. 610 

https://doi.org/10.5194/egusphere-2025-860
Preprint. Discussion started: 10 April 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

• The pattern for GGEV differs from the other distributions because, in GEV, LN3, and P3, skewness is distinctly 

concentrated only in RDA2. 

Based on the above comparison, the GGEV distribution shows some similarities with other distributions regarding the 

occurrence and correlation of the distribution parameters. However, there are differences in certain aspects, such as the 

distribution of parameters in the principal components and parameter correlations, which indicates unique characteristics of 615 

GGEV compared to GEV, LN3, and P3. GGEV often differs from other distributions in how its parameters spread within the 

principal component space, which may be significant when modeling and interpreting extreme flow data analysis results. 

4.5. Overparameterization check 

In order to evaluate the overparameterization or overfitting problem, results are hereafter summarized for the 4 steps of the 

methodology outlined in Figure 3. 620 

Step 1 

Out of the two distributions (Exp and LN2), only LN2 demonstrates the best fit across all 678 profiles based on accuracy 

measures. Nevertheless, we performed the tests for both distributions. Additionally, these distributions were evaluated against 

three- and four-parameter distributions (GEV and GGEV) using the same criteria.  

Step 2 625 

The GEV distribution, analyzed for 172 profiles, exhibited shape parameter values consistently near zero, remaining below 

one. In turn, the fitted LN2 distribution has a shape parameter value greater than 1 for only seven stations. In contrast, the 

GGEV distribution has a shape parameter value greater than 1 for a smaller number of four stations. It is worth noting that the 

additional shape parameter reached a value greater than 1 for 45 profiles out of the 281 analyzed. However, as shown by the 

RDA analysis, the contribution of the add. shape parameter relative to the shape parameter is smaller. This may suggest that 630 

the add. shape parameter primarily compensates for the limitations of the shape parameter in distributions with lighter tails. 

The details are in Supplementary Materials Tables S3-S5. This is confirmed by the research of Nascimento et al. (2016), who 

state that when the additional shape parameter is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more 

effective for modeling extreme events that may occur more frequently than lighter-tailed distributions would predict. 

Step 3 635 

The Kolmogorov-Smirnov test comparing theoretical quantiles (Exp distribution) with empirical data found no significant 

differences (p-value > 0.05) for 372 out of 678 profiles, indicating agreement between the distributions. Similarly, when 

comparing empirical quantiles to random samples (Exp distribution), 279 profiles showed no significant differences, 

suggesting a comparable nature of the empirical and random distributions in these cases. This corresponds to a fit rate of 74.9% 

(279/372). 640 

A better fit was obtained for the LN2 distribution. The Kolmogorov-Smirnov test comparing theoretical quantiles (LN2 

distribution) with empirical data found no significant differences (p-value > 0.05) for 678 out of 678 profiles, indicating 

agreement between the distributions. Similarly, when comparing empirical quantiles to random samples (LN2 distribution), 

661 profiles showed no significant differences, suggesting a comparable nature of the empirical and random distributions in 

these cases. This corresponds to a fit rate of 97.5% (678/661). 645 

A much better fit was obtained for the GEV and GGEV distributions. The Kolmogorov-Smirnov test comparing theoretical 

quantiles (GEV distribution) with empirical data found no significant differences (p-value > 0.05) for 172 out of 172 profiles, 

indicating agreement between the distributions. Similarly, when comparing empirical quantiles to random samples (GEV 

distribution), 171 profiles showed no significant differences, suggesting a comparable nature of the empirical and random 

distributions in these cases. This corresponds to a fit rate of 99.4% (171/172). The Kolmogorov-Smirnov test comparing 650 

theoretical quantiles (GGEV distribution) with empirical data found no significant differences (p-value > 0.05) for 281 out of 

281 profiles, indicating agreement between the distributions. Similarly, when comparing empirical quantiles to random 
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samples (GGEV distribution), 281 profiles showed no significant differences, suggesting a comparable nature of the empirical 

and random distributions in these cases. This corresponds to a fit rate of 100% (281/281). 

The results showed that distributions with higher parameters (three or more, such as GEV and GGEV) not only provided 655 

slightly better fit in some cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting 

(in the empirical data vs. random quantiles scenario). 

Step4 

The GEV and GGEV distributions were subjected to K-Fold cross-validation alongside the LN2 and Exp distributions. 

The K-Fold cross-validation results are presented as the percentage distribution of outcomes across individual intervals relative 660 

to the total number of results (Table 1). 

Table 1. Percentage distribution of K-Fold cross-validation results across individual intervals relative to the total number of 

outcomes. 

Distribution 
MAE  
(0 - 100) 

MAE 
(101 - 1000) 

RMSE  
(0 - 100) RMSE (101 - 1000) 

RMSE (1001 - 10 
000) 

2LN 94.8% 5.22% 92.37% 7.63% 0% 

Exp 94.8% 5.22% 92.37% 4.24% 3.39% 

GEV 95.09% 4.91% 100% 0% 0% 

GGEV 94.9% 5.12% 98.48% 1.51% 0% 

Explanation: MAE – mean absolute error, RMSE - root mean square error, 0–100 – best-fitting model, 101–1000 – well-fitting model, 1001–

10,000 – poorest-fitting model. 665 

 

MAE and RMSE values vary significantly, ranging from very low (close to 0) to much higher values (e.g., 1000). High values 

suggest that the model predicts river flows less accurately for certain rivers. The intervals represent the quality of model fit, 

with 0–100 indicating the best fit, 101–1000 well fitting model, and 1001–10,000 the poorest fit. The GEV distribution 

achieved the highest percentage of best-fitting models (95.09% for MAE and 100% for RMSE), indicating superior 670 

performance compared to the other distributions. The GGEV distribution also showed strong results, with 94.9% of models 

falling in the best-fit category for MAE and 98.48% for RMSE. The LN2 and Exp distributions performed similarly, with over 

94% of results in the best-fit category for both MAE and RMSE. However, the Exp distribution showed a small proportion 

(3.39%) of poorest-fitting models in the RMSE category, which was not observed for the other distributions. Overall, the GEV 

and GGEV distributions demonstrated the most consistent performance across both error metrics.  675 

To summarize, Step 4 showed that the GGEV and GEV distributions have excellent predictive efficiency (better than 

distributions with fewer parameters), demonstrating that in most cases analyzed, they are quite robust to overparameterization 

and overfitting. 

Although the study used observational series of 30 years or more, the number of profiles analyzed in highland and mountainous 

areas was considerably lower than those in lowland areas. Furthermore, the number of observational series exhibiting a positive 680 

trend in the analyzed region was limited. 

5 Conclusions 

The main findings of this research can be summarized as follows: 

1. Based on the trend criterion, the GGEV distribution, compared to the analyzed three-parameter distributions, and the 

GEV distribution compared to the other three-parameter distributions were the best fit for most samples. 685 

2. Based on the trend criterion and catchment size it was found that the GEV distribution is best suited for micro- and 

meso-catchments, while the GGEV distribution is ideal for macro- to large-catchments where the series exhibits a 

trend (either negative trend or no trend). The P3 distribution is preferred for very large catchments but only when the 
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sample has no trend. In contrast, for samples with a positive trend, the GGEV distribution performs best across meso- 

to very large catchments. 690 

3. The GGEV distribution, in comparison with the analyzed P3, LN3, and GEV distributions, was not flexible regarding 

the parameters A and Qp for samples with no trend, but it was flexible for samples with detected positive or negative 

trends. 

4. Catchment size types influence the distribution parameters, with the most types affecting the parameters of GEV and 

LN3, and the least types affecting the parameters of GGEV and P3. 695 

5. Additionally, the parameters of P3 and GGEV distributions are not correlated with landscape forms. 

6. Our findings showed that some patterns between the P3 and GEV distributions were identical to those with GGEV. 

A similar pattern between GGEV and P3 was observed: highland, lowland and midland topographies were outside 

RDA1, indicating no influence of these factors on the scale and location parameters, and N was negatively correlated 

with the shape parameters. The GGEV distribution had a similar pattern to the GEV distribution, where the no trend 700 

samples appeared in RDA2 for both distributions. 

7. It was found that adding the shape parameter of the GGEV distribution primarily compensates for the limitations of 

the shape parameter in distributions with lighter tails. 

8. Using the Kolmogorov-Smirnov test it was found that the GEV and GGEV not only provided slightly better fit in 

some cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting (in the 705 

empirical data vs. random quantiles scenario) in comparison to Exp and LN2. Furthermore, the robustness of GEV 

and GGEV distributions to overparameterization and overfitting is confirmed by K-Fold cross validation. 

9. Based on the above, in the era of climate change, distributions like GGEV are expected to be better suited under the 

presence of trends, having a clear performance benefit. 

The results of this study highlight several promising avenues for future research. One potential direction is the further 710 

exploration of the GGEV distribution in the context of various hydrological and meteorological phenomena. Given its superior 

performance in fitting most samples and its sensitivity to trends, especially under non-stationary conditions like climate change, 

future studies could examine its applicability across different geographical regions and climatic conditions. 

The findings on the influence of catchment types on distribution parameters indicate that more research is needed to refine our 

understanding of how landscape characteristics interact with hydrological distributions. A deeper exploration into the 715 

relationship between catchment area characteristics, especially in varied topographies and land-use patterns, could yield more 

universal insights. Expanding the range of predictor variables used in modeling, beyond trend detection, nature of catchment, 

catchment area, and the hydrological characteristics, might also improve the accuracy and flexibility of distribution selection. 
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